| [1] | Kiriyama, Y. and Nochi, H. (2017) Intra- and Intercellular Quality Control Mechanisms of Mitochondria. Cells, 7, Article 1. https://doi.org/10.3390/cells7010001
 | 
                     
                                
                                    
                                        | [2] | Exner, N., Lutz, A.K., Haass, C. and Winklhofer, K.F. (2012) Mito-chondrial Dysfunction in Parkinson’s Disease: Molecular Mechanisms and Pathophysiological Consequences. The EMBO Journal, 31, 3038-3062. https://doi.org/10.1038/emboj.2012.170
 | 
                     
                                
                                    
                                        | [3] | Völgyi, K., Badics, K., Sialana, F.J., et al. (2018) Early Presympto-matic Changes in the Proteome of Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer’s Disease. Molecular Neurobiology, 55, 7839-7857. https://doi.org/10.1007/s12035-018-0955-6
 | 
                     
                                
                                    
                                        | [4] | 申屠路媚, 牟艳玲. 线粒体功能障碍机制及其相关疾病研究进展[J]. 生命科学, 2018, 30(1): 87-93. | 
                     
                                
                                    
                                        | [5] | 肖义军, 俞如旺. 用高倍镜观察线粒体实验的建议[J]. 生物学教学, 2011, 36(2): 60. | 
                     
                                
                                    
                                        | [6] | Granata, C., Jamnick, N.A. and Bishop, D.J. (2018) Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Medicine, 48, 1809-1828. https://doi.org/10.1007/s40279-018-0936-y
 | 
                     
                                
                                    
                                        | [7] | Hammond, K., Ryadnov, M.G. and Hoogenboom, B.W. (2021) Atomic Force Microscopy to Elucidate How Peptides Disrupt Membranes. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1863, Article ID: 183447. https://doi.org/10.1016/j.bbamem.2020.183447
 | 
                     
                                
                                    
                                        | [8] | Heath, G.R., Kots, E., Robertson, J.L., et al. (2021) Localiza-tion Atomic Force Microscopy. Nature, 594, 385-390. https://doi.org/10.1038/s41586-021-03551-x
 | 
                     
                                
                                    
                                        | [9] | Müller, D.J., Dumitru, A.C., Lo Giudice, C., et al. (2021) Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Sys-tems. Chemical Reviews, 121, 11701-11725. https://doi.org/10.1021/acs.chemrev.0c00617
 | 
                     
                                
                                    
                                        | [10] | Vogt, N. (2021) Atomic Force Microscopy in Super-Resolution. Nature Methods, 18, 859. https://doi.org/10.1038/s41592-021-01246-9
 | 
                     
                                
                                    
                                        | [11] | Nikolaisen, J., Nilsson, L.I.H., Pettersen, I.K.N., et al. (2014) Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties. PLOS ONE, 9, e101365. https://doi.org/10.1371/journal.pone.0101365
 | 
                     
                                
                                    
                                        | [12] | Kolossov, V.L., Sivaguru, M., Huff, J., et al. (2018) Airyscan Super-Resolution Microscopy of Mitochondrial Morphology and Dynamics in Living Tumor Cells. Microscopy Re-search and Technique, 81, 115-128. https://doi.org/10.1002/jemt.22968
 | 
                     
                                
                                    
                                        | [13] | Rocha, E.M., De Miranda, B. and Sanders, L.H. (2018) α-Synuclein: Pa-thology, Mitochondrial Dysfunction and Neuroinflammation in Parkinson’s Disease. Neurobiology of Disease, 109, 249-257. https://doi.org/10.1016/j.nbd.2017.04.004
 | 
                     
                                
                                    
                                        | [14] | Szymański, J., Janikiewicz, J., Michalska, B., et al. (2017) Interac-tion of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular Sciences, 18, Article 1576. https://doi.org/10.3390/ijms18071576
 | 
                     
                                
                                    
                                        | [15] | Bastian, C., Day, J., Politano, S., et al. (2019) Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter after Ischemia. NeuroMolecular Medicine, 21, 484-492. https://doi.org/10.1007/s12017-019-08550-w
 | 
                     
                                
                                    
                                        | [16] | Csordás, G., Weaver, D. and Hajnóczky, G. (2018) Endoplas-mic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends in Cell Biology, 28, 523-540. https://doi.org/10.1016/j.tcb.2018.02.009
 | 
                     
                                
                                    
                                        | [17] | Correia-Álvarez, E., Keating, J.E., Glish, G., Tarran, R. and Sassano, M.F. (2020) Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cellular Membrane Potential Are Pre-dictors of E-Liquid Induced Cellular Toxicity. Nicotine & Tobacco Research, 22, S4-S13. https://doi.org/10.1093/ntr/ntaa177
 | 
                     
                                
                                    
                                        | [18] | Feng, R., Guo, L., Fang, J., et al. (2019) Construction of the FRET Pairs for the Visualization of Mitochondria Membrane Potential in Dual Emission Colors. Analytical Chemistry, 91, 3704-3709. https://doi.org/10.1021/acs.analchem.8b05822
 | 
                     
                                
                                    
                                        | [19] | Wang, C., Wang, G., Li, X., et al. (2017) Highly Sensitive Flu-orescence Molecular Switch for the Ratio Monitoring of Trace Change of Mitochondrial Membrane Potential. Analytical Chemistry, 89, 11514-11519. https://doi.org/10.1021/acs.analchem.7b02781
 | 
                     
                                
                                    
                                        | [20] | Rossow, H.A., Acetoze, G., Champagne, J., et al. (2018) Measuring Liver Mitochondrial Oxygen Consumption and Proton Leak Kinetics to Estimate Mitochondrial Respiration in Holstein Dairy Cattle. Journal of visualized experiments, 141. https://doi.org/10.3791/58387
 | 
                     
                                
                                    
                                        | [21] | Zhang, H., Chang, Z., Mehmood, K., et al. (2018) Nano Copper Induces Apoptosis in PK-15 Cells via a Mitochondria-Mediated Pathway. Biological Trace Element Research, 181, 62-70. https://doi.org/10.1007/s12011-017-1024-0
 | 
                     
                                
                                    
                                        | [22] | Marchi, S., Pa-tergnani, S., Missiroli, S., et al. (2018) Mitochondrial and Endoplasmic Reticulum Calcium Homeostasis and Cell Death. Cell Calcium, 69, 62-72. https://doi.org/10.1016/j.ceca.2017.05.003
 | 
                     
                                
                                    
                                        | [23] | Boyman, L., Karbowski, M. and Lederer, W.J. (2020) Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends in Molecular Medicine, 26, 21-39. https://doi.org/10.1016/j.molmed.2019.10.007
 | 
                     
                                
                                    
                                        | [24] | Wacquier, B., Combettes, L. and Dupont, G. (2020) Dual Dynamics of Mitochondrial Permeability Transition Pore Opening. Scientific Reports, 10, Article No. 3924. https://doi.org/10.1038/s41598-020-60177-1
 | 
                     
                                
                                    
                                        | [25] | 程明月, 郭海, 郑宏. 糖尿病心肌中线粒体膜通透性转化孔变化的研究进展[J]. 新医学, 2016, 47(2): 73-75. | 
                     
                                
                                    
                                        | [26] | Morciano, G., Naumova, N., Koprowski, P., et al. (2021) The Mitochondrial Permeability Transition Pore: An Evolving Concept Critical for Cell Life and Death. Biological Re-views, 96, 2489-2521. https://doi.org/10.1111/brv.12764
 | 
                     
                                
                                    
                                        | [27] | Lee, P., Chandel, N.S. and Simon, M.C. (2020) Cel-lular Adaptation to Hypoxia through Hypoxia Inducible Factors and Beyond. Nature Reviews Molecular Cell Biology, 21, 268-283. https://doi.org/10.1038/s41580-020-0227-y
 | 
                     
                                
                                    
                                        | [28] | 张鑫, 黎萍, 王钰涵, 等. 血管性痴呆认知功能障碍与海马线粒体功能异常的机制研究进展[J]. 中国全科医学, 2022, 25(23): 2910-2916. | 
                     
                                
                                    
                                        | [29] | Schönfeld, P. and Wojtczak, L. (2016) Short- and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954. https://doi.org/10.1194/jlr.R067629
 | 
                     
                                
                                    
                                        | [30] | Mcfarlane, C.R. and Murray, J.W. (2020) A Sensitive Coupled Enzyme Assay for Measuring Kinase and ATPase Kinetics Using ADP-Specific Hexokinase. Bio-Protocol Journal, 10, e3599. https://doi.org/10.21769/BioProtoc.3599
 | 
                     
                                
                                    
                                        | [31] | Tan, K.Y., Li, C.Y., Li, Y.F., et al. (2017) Real-Time Monitoring ATP in Mitochondrion of Living Cells: A Specific Fluorescent Probe for ATP by Dual Recognition Sites. Analytical Chemistry, 89, 1749-1756. https://doi.org/10.1021/acs.analchem.6b04020
 | 
                     
                                
                                    
                                        | [32] | De Col, V., Fuchs, P., Nietzel, T., et al. (2017) ATP Sensing in Living Plant Cells Reveals Tissue Gradients and Stress Dynamics of Energy Physiology. eLife, 6, e26770. https://doi.org/10.7554/eLife.26770
 | 
                     
                                
                                    
                                        | [33] | Klier, P.E.Z., Martin, J.G. and Miller, E.W. (2021) Imaging Reversible Mitochondrial Membrane Potential Dynamics with a Masked Rhodamine Voltage Reporter. Journal of the American Chemical Society, 143, 4095-4099. https://doi.org/10.1021/jacs.0c13110
 | 
                     
                                
                                    
                                        | [34] | Mita, M., Sugawara, I., Harada, K., et al. (2022) Development of Red Genetically Encoded Biosensor for visuaLization of Intracellular Glucose Dynamics. Cell Chemical Biology, 29, 98-108.E4. https://doi.org/10.1016/j.chembiol.2021.06.002
 | 
                     
                                
                                    
                                        | [35] | Murata, O., Shindo, Y., Ikeda, Y., et al. (2020) Near-Infrared Fluorescent Probes for Imaging of Intracellular Mg2+ and Application to Multi-Color Imaging of Mg2+, ATP, and Mito-chondrial Membrane Potential. Analytical Chemistry, 92, 966-974. https://doi.org/10.1021/acs.analchem.9b03872
 | 
                     
                                
                                    
                                        | [36] | Arai, S., Kriszt, R., Harada, K., et al. (2018) RGB-Color Inten-siometric Indicators to Visualize Spatiotemporal Dynamics of ATP in Single Cells. Angewandte Chemie International Edition, 57, 10873-10878. https://doi.org/10.1002/anie.201804304
 | 
                     
                                
                                    
                                        | [37] | Formosa, L.E., Dibley, M.G., Stroud, D.A. and Ryan, M.T. (2018) Building a Complex Complex: Assembly of Mitochondrial Respiratory Chain Complex I. Seminars in Cell & Develop-mental Biology, 76, 154-162. https://doi.org/10.1016/j.semcdb.2017.08.011
 | 
                     
                                
                                    
                                        | [38] | Vankayala, R. and Hwang, K.C. (2018) Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Advanced Materials, 30, e1706320. https://doi.org/10.1002/adma.201706320
 | 
                     
                                
                                    
                                        | [39] | Wang, S., Zhang, Z., Wei, S., et al. (2021) Near-Infrared Light-Controllable MXene Hydrogel for Tunable on-Demand Release of Therapeutic Proteins. Acta Biomaterialia, 130, 138-148. https://doi.org/10.1016/j.actbio.2021.05.027
 | 
                     
                                
                                    
                                        | [40] | Bock, F.J. and Tait, S.W.G. (2020) Mitochondria as Multifaceted Regulators of Cell Death. Nature Reviews Molecular Cell Biology, 21, 85-100. https://doi.org/10.1038/s41580-019-0173-8
 | 
                     
                                
                                    
                                        | [41] | Sharifi-Rad, M., Anil Kumar, N.V., Zucca, P., et al. (2020) Life-style, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11, Article 694. https://doi.org/10.3389/fphys.2020.00694
 | 
                     
                                
                                    
                                        | [42] | Caliskan, S., Oldenhof, H., Brogna, R., et al. (2021) Spectroscopic Assessment of Oxidative Damage in Biomolecules and Tissues. Spectrochimica Acta Part A: Molecular and Biomolecu-lar Spectroscopy, 246, Article ID: 119003. https://doi.org/10.1016/j.saa.2020.119003
 | 
                     
                                
                                    
                                        | [43] | 王翠平, 姚梦宇, 叶柳, 等. 电子自旋共振技术在生物领域的应用进展[J]. 大学物理实验, 2020, 33(1): 29-33. |