18F-FDG-PET在致痫灶定位方面的研究进展
Research Progress of 18F-FDG-PET in the Localization of Epileptogenic Foci
DOI: 10.12677/ACM.2023.13102132, PDF, HTML, XML, 下载: 258  浏览: 316 
作者: 李双双:延安大学医学院,陕西 延安;空军军医大学第一附属医院神经内科,陕西 西安;马 磊:空军军医大学第一附属医院神经内科,陕西 西安;高学军*:延安大学医学院,陕西 延安;延安大学附属医院神经内科,陕西 延安
关键词: 癫痫影像学正电子发射断层扫描技术(PET)Epilepsy Imaging Positron Emission Tomography (PET)
摘要: 癫痫是一种常见的脑部疾病,是神经元突发异常放电所致的大脑功能障碍。影像学在癫痫的诊断定位方面有重要的指导意义,PET是重要的影像学方法之一,本文对近年来18F-FDG-PET在致痫灶定位的研究进展进行综述,以期加深对疾病的理解,使医生能够更准确地决定如何治疗这种疾病提供参考。
Abstract: Epilepsy is a common brain disorder characterized by abnormal neuronal discharges, resulting in functional impairments. Imaging plays an important role in the diagnosis and localization of epi-lepsy, and PET is one of the important imaging methods. This article provides a review of the recent research progress of 18F-FDG-PET in epilepsy, aiming to deepen the understanding of the disease and provide references for doctors to make more accurate treatment decisions.
文章引用:李双双, 马磊, 高学军. 18F-FDG-PET在致痫灶定位方面的研究进展[J]. 临床医学进展, 2023, 13(10): 15241-15246. https://doi.org/10.12677/ACM.2023.13102132

1. 引言

癫痫是最常见脑部疾病之一,能产生持续癫痫发作的脑部持久性改变以及同步表现出相应的神经运动、感觉、意识、自主神经、精神等不同程度的障碍,不同程度地影响患者的生活质量,反映了潜在的多变性和多因素脑功能障碍 [1] [2] 。抗癫痫药物可控制约2/3的痫性发作,但并不会改变长期预后,其中大约1/3的患者会转变为药物难治性癫痫 [3] ,现阶段外科手术是控制药物难治性癫痫发作最有效的治疗方法,而手术成功的关键在于对致痫灶的精准定位和彻底切除或破坏 [4] [5] 。致痫灶是一个理论上的概念,很难用单一的诊断方式来精确定位它,所以术前需要采取多种评估方式来估计并无限的靠近致痫灶。临床表现、影像学、脑电图是目前术前评估的三大基石。视频脑电图监测是临床评估癫痫发作、定位的首选方式,但由于其是非侵入性的,无法充分识别脑深部的病变和快速扩散的癫痫发作,导致癫痫灶定位证据不足,甚至不准确或具有误导性 [6] [7] 。影像学是识别癫痫患者形态和功能异常的首选方式,可弥补视频脑电图的部分不足。影像学又包括结构影像和功能影像。其中正电子发射计算机断层成像(positron emission computed tomography, PET)是重要的功能影像之一,18F-氟代脱氧葡萄糖(fluorodeoxyglucose, FDG)是常见的显像剂,在评估许多大脑疾病中起着至关重要的作用,对致痫灶的定位具有较高的敏感性。基于视觉的定性分析是目前分析PET最广泛使用的方法,然而,这种方式受医师主观因素影响较大,存在很大的不确定性 [8] 。近年来,定量分析在评估致痫灶方面的研究逐渐增多,可提高对致痫灶定位的准确性,定量分析有潜力通过提供更准确的定量评估来量化癫痫患者的严重程度、进展和改善的能力,使医生能够更全面地决定如何选择患者的治疗方式,以提高癫痫患者的生活质量。本文就18F-FDG-PET在癫痫诊断中的应用作一综述。

2. 18F-FDG-PET技术

PET是一种常见的功能影像检查设备,使用放射性示踪剂来识别病理性代谢反应和神经炎症的发展进程。PET检查可用于各种生物过程的成像和量化,例如血流,代谢,运输速率,蛋白质和DNA的合成以及受体密度,PET放射性示踪剂由正电子发射同位素标记,该同位素产生成对的伽马光子,PET扫描仪通过重合检测检测到这些光子,这使得PET具有毫米级的空间分辨率,因此PET产生的功能成像数据的空间分辨率较高。目前已发现多种显像剂,如18F-FDG、11C-ABP688、11C-氟马西尼、11C-PBR28、11C-UCB-J、11C-胆碱等 [7] [9] 。最常用到示踪剂类型是18F-FDG,利用从中获取的葡萄糖代谢率及标准化摄取值(standardized intake value, SUV)等参数可以对疾病做出诊断 [10] 。18F-FDG-PET广泛应用于多种疾病的诊治过程,包括感染、炎症、心脏、肿瘤及神经功能等 [11] [12] [13] ,PET联合FDG可用于区分肿瘤和非肿瘤病变,或良性和恶性肿瘤。是评估潜在恶性细胞的重要鉴别因素 [14] ,有研究表明预后不良的晚期恶性肿瘤可能表现出低FDG摄取 [15] 。

在神经系统中,18F-FDG-PET已经用于中枢神经系统淋巴瘤 [16] 、副肿瘤性神经系统综合征 [17] 、阿尔茨海默病 [18] 、癫痫等疾病的诊疗过程,可提供部分病理生理学及诊断信息,对良恶性病变的鉴别及治疗、癫痫灶的定侧定位均具有重要的指导意义 [10] 。

3. 18F-FDG-PET在癫痫诊断中的应用

对于有结构异常的致痫灶,核磁共振成像(magnetic resonance imaging, MRI)可以清晰显示,但很多癫痫病灶没有结构异常,在颅脑CT或MRI图像上很难显示病灶 [19] 。癫痫发生的典型特征是神经元损伤和神经胶质增生 [20] 。神经元损伤可导致代谢减退,因此可通过18F-FDG-PET进行识别,18F-FDG-PET已被证明是神经损伤和功能障碍的有希望的生物标志物 [21] 。18F-FDG-PET通过测量葡萄糖消耗提供了神经元能量代谢的间接指标物。18F-FDG-PET扫描是在发作间期获得的,因为大脑对18F-FDG的摄取发生在注射后的30~40分钟,代表了摄取期细胞代谢过程的成像总和。考虑到平均癫痫发作持续时间为1-2分钟,延长的大脑代谢摄取使FDG不适合测量快速神经元事件;因此,癫痫患者发作期的18F-FDG-PET获取在临床上是不可行的 [22] 。癫痫患者发作间期通过18F-FDG-PET成像可以发现低代谢区,相较于MRI等非侵入检查有着较高的敏感度,且PET定位的致痫灶与术中皮层脑电图结果一致率高达90% [23] 。

然而,18F-FDG-PET大脑显像显示的病灶范围往往大于“金标准”的致痫灶,发作间期PET所示的致痫灶与糖代谢降低的区域相关,可涉及致痫灶远处的其他部位,如发作起始区、症状产生区等部位,造成手术方式的扩大,且低代谢范围的扩大程度往往与预后呈负相关 [23] [24] ,且对于不同部位的致痫灶诊断有一定的差异。颞叶癫痫的代谢减退率高于颞叶外癫痫,推测可能是由于癫痫的快速传播或长期发作所导致的 [7] [25] 。侯亚琴 [26] 等人的研究支持上述观点,表示18F-FDG PET/CT在颞叶癫痫患者的术前定侧准确性及定位准确性均优于颞叶外癫痫患者。

18F-FDG-PET可在PET/CT或PET/MR仪器上获取。其中研究表明18F-FDG-PET显像在常规 MRI 阴性尤其局灶性皮质发育不良引起的难治性局灶癫痫患者的诊断、术前定位及手术制定中尤为重要,并且在手术后取得了较佳的效果 [27] 。既往多项表示PET/CT与MRI异机融合的识别致痫灶的灵敏度可达82%,高于单独的PET或MRI成像,提高了定位致痫灶的准确性 [28] [29] ,且对于选择是否进行手术或侵入性操作更加安全 [30] ,但由于其为异机扫描获得的PET及MRI头像,存在配准欠佳的问题,可对致痫灶的产生一定的误差。

一体化PET/MR是一种较新的设备,可在一次检查中连续或同时采集功能和结构图像,使图像配准更加精准,以定位解剖和代谢的异常,极大程度上的减少误差、伪影,能够有效提高定位的准确性及敏感度 [31] [32] [33] [34] 。Flaus [35] 等人对26例局灶性癫痫患者的研究发现,一体化PET/MR相比于PET/MR异机融合对致痫灶的定位提高了13%的灵敏度,且改变了40%患者的手术方式,优化了术前检查,改善了患者的预后。郭坤 [36] 等人通过一体化PET/MR设备对57例MRI阴性的药物难治性癫痫患者进行致痫灶定位的研究发现MRI、PET、PET/MR融合显像的阳性检出率分别为31.6%、89.5%、90.0%,提高了定位致痫灶的准确性。但仍有部分致痫灶不易被检测到。

4. 18F-FDG-PET定量分析在癫痫诊断中的应用

约15%-30%的难治性癫痫患者MRI阴性,最常见的是海马硬化症和局灶性皮质发育不良。其中高达80%的局灶性皮质发育不良病变无法被视觉检测到 [37] 。但手术切除可改善患者的癫痫发作,随着科技的进步,PET定量分析得到了巨大的发展。PET定量分析可以清晰显示部分视觉不易观察到的病灶,且不受主观因素影响。

既往有研究表明,使用18F-FDG-PET对代谢减退进行视觉评估不如使用基于体素的标准化比较与健康对照组进行定量评估和MRI共配准准确 [38] [39] 。形态测量分析程序(morphometric analysis program, MAP)是一种常用的MRI后处理成像方式,MAP可以帮助检测MRI阴性手术候选者局灶性皮质发育不良的细微异常 [40] [41] 。Guo [42] 等人的研究指出PET定量分析具有优于MAP的灵敏度,联合MAP及PET定量分析可以提高致痫灶定位的特异性,可以更加优化手术切除方式。Tan [43] 等人通过基于MRI和PET组合特征的优化皮质表面采样构建分类器来自动检测细微或视觉上无法识别的局灶性皮质发育不良。在疾病的检测中优于定量MRI和多模态视觉分析(93% vs 82% vs 68%),指出自动检测具有较高的灵敏度和特异性。Mendes [27] 等人研究发现用自动定量补充传统PET视觉分析的方法,可以检测到局灶性皮质发育不良病人的低代谢区,尤其是位于额叶病变的患者。

Peter [44] 等人在颞叶癫痫患者的研究使用18F-FDG-PET进行全局定量分析,表明全局定量分析是颞叶癫痫代谢评估的有力工具,与视觉评估和传统的活检区域定量相比,可以更准确地识别癫痫偏侧化和治疗的潜在影响。因此研究指出迫切需要将这些新的方法引入到颞叶癫痫的治疗中。虽然18F-FDG-PET最常用于视觉评估,但定性分析与高水平的观察者间和观察者内变异性相关。使用标准化摄取值的半定量分析是对TLE患者低代谢模式的更一致、准确的测量。使用脑分割结合局部容积校正和18F-FDG-PET的全局SUV定量可以更准确地量化颞叶癫痫患者的低代谢。这项新技术有可能通过提供更准确的定量评估来提高颞叶癫痫患者的生活质量。更准确地判断病情的严重程度、进程和改善的能力,将使医生能够更准确地决定治疗方式 [44] 。

Yen-Cheng [45] 等人通过机器学习建立18F-FDG-PET定量分析模型,发现定量分析(98.15%)的敏感性高于视觉分析(81.48%)方式,这项研究采用机器学习分类器提供了一种人工智能工具,该工具能够从18F-FDG PET数据中提取图像特征,并将归一化的PET摄取与18F-FDG PET图像的ROI进行分类,以确定侧化的致痫灶。对患者数据的图像预处理强调了18F-FDG成功侧化致癫痫灶解释的关键信息。使用机器学习图谱解释的致痫灶的侧化的准确率高达96.0%。所提出的基于人工智能的侧化致癫痫灶解释方法可以为18F-FDG-PET扫描对癫痫手术的术前诊断提供帮助,且高度准确、方便。

不仅如此,PET定量分析联合MRI等检查进行多模态成像的整合更能进一步提高对致痫灶定位的准确性。Traub-Weidinger [46] 等人通过将定量分析后的PET图像映射到T1序列上,发现丘脑和白质异常区域的识别很难通过视觉分析观察到,而定量分析可以观察到这些区域的异常,但相关性目前仍不清楚,还有待进一步研究。这项研究同时指出定量分析可以识别高代谢区域,提示可能反映癫痫发生和传播直接相关的脑网络动态变化;也提出了由于心理因素可能会影响大脑区域活动中所表达的内在状态,正常人群中葡萄糖代谢率的高生理变异性可能限制了定量分析的敏感性。总之,定量分析在致痫灶的定位中具有不可忽视的意义。

5. 总结与展望

18F-FDG-PET在癫痫灶的定侧定位中有巨大的价值,包括分子神经成像在内的多模态成像在癫痫术前评估中具有越来越重要的作用,以定位致痫灶。定量分析提高了这些方式在识别致痫起病区和作为可能的治疗途径方面的诊断效用。影像学检查与多学科方法相结合,对癫痫患者进行术前评估,可以通过减少术后神经功能缺损和帮助更新的微创外科手术来大大改善结局。未来,定量图像分析的持续改进,多模态成像的整合以及PET放射性示踪剂的开发和增强将使人们能够更全面地了解癫痫的病理生理机制 [7] ,在癫痫患者的研究中发挥更大的作用。

NOTES

*通讯作者。

参考文献

[1] 张立群. 癫痫发病机制及治疗研究[J]. 医学信息, 2021, 34(16): 44-46.
[2] Sander, J.W. (2003) The Epidemiology of Epilepsy Revisited. Current Opinion in Neurology, 16, 165-170.
https://doi.org/10.1097/00019052-200304000-00008
[3] Bell, G.S., Neligan, A., Giavasi, C., et al. (2016) Out-come of Seizures in the General Population after 25 Years: A Prospective Follow-Up, Observational Cohort Study. Journal of Neurology, Neurosurgery and Psychiatry, 87, 843-850.
https://doi.org/10.1136/jnnp-2015-312314
[4] Thijs, R.D., Surges, R., O’Brien, T.J., et al. (2019) Epilepsy in Adults. The Lancet, 393, 689-701.
https://doi.org/10.1016/S0140-6736(18)32596-0
[5] Jehi, L., Yardi, R., Chagin, K., et al. (2015) Development and Validation of Nomograms to Provide Individualised Predictions of Seizure Outcomes after Epilepsy Surgery: A Ret-rospective Analysis. The Lancet Neurology, 14, 283-290.
https://doi.org/10.1016/S1474-4422(14)70325-4
[6] Spencer, S.S., Williamson, P.D., Bridgers, S.L., et al. (1985) Reliability and Accuracy of Localization by Scalp Ictal EEG. Neurology, 35, 1567-1575.
https://doi.org/10.1212/WNL.35.11.1567
[7] Ponisio, M.R., Zempel, J.M., Day, B.K., et al. (2021) The Role of SPECT and PET in Epilepsy. AJR American Journal of Roentgenology, 216, 759-768.
https://doi.org/10.2214/AJR.20.23336
[8] Basu, S., Zaidi, H., Houseni, M., et al. (2007) Novel Quantitative Techniques for Assessing Regional and Global Function and Structure Based on Modern Imaging Modalities: Implica-tions for Normal Variation, Aging and Diseased States. Seminars in Nuclear Medicine, 37, 223-239.
https://doi.org/10.1053/j.semnuclmed.2007.01.005
[9] 杨馥宁, 张极峰, 李萍. 癫痫的神经影像学研究进展[J]. 癫痫与神经电生理学杂志, 2022, 31(4): 243-247, 250.
[10] Nozawa, A., Rivandi, A.H., Kesari, S., et al. (2013) Glu-cose Corrected Standardized Uptake Value (SUVgluc) in the Evaluation of Brain Lesions with 18F-FDG PET. European Journal of Nuclear Medicine and Molecular Imaging, 40, 997-1004.
https://doi.org/10.1007/s00259-013-2396-9
[11] Glaudemans, A.W., de Vries, E.F., Galli, F., et al. (2013) The Use of (18)F-FDG-PET/CT for Diagnosis and Treatment Monitoring of Inflammatory and Infectious Diseases. Clinical & Developmental Immunology, 2013, Article ID: 623036.
https://doi.org/10.1155/2013/623036
[12] Mohammadi, I., Castro, F., Rahmim, A., et al. (2022) Motion in Nuclear Cardiology Imaging: Types, Artifacts, Detection and Correction Techniques. Physics in Medicine & Biology, 67, 02TR02.
https://doi.org/10.1088/1361-6560/ac3dc7
[13] Kim, S. and Mountz, J.M. (2011) SPECT Imaging of Epilepsy: An Overview and Comparison with F-18 FDG PET. International Journal of Molecular Imaging, 2011, Article ID: 813028.
https://doi.org/10.1155/2011/813028
[14] Lucignani, G., Paganelli, G. and Bombardieri, E. (2004) The Use of Standardized Uptake Values for Assessing FDG Uptake with PET in Oncology: A Clinical Perspective. Nuclear Medi-cine Communications, 25, 651-656.
https://doi.org/10.1097/01.mnm.0000134329.30912.49
[15] Stahl, A., Ott, K., Weber, W.A., et al. (2003) FDG PET Imaging of Locally Advanced Gastric Carcinomas: Correlation with Endoscopic and Histopathological Findings. European Journal of Nuclear Medicine and Molecular Imaging, 30, 288-295.
https://doi.org/10.1007/s00259-002-1029-5
[16] Zhang, Y., Cai, J., Lin, Z., et al. (2021) Primary Central Nervous System Lymphoma Revealed by 68Ga-FAPI and 18F-FDG PET/CT. Clinical Nuclear Medicine, 46, e421-e423.
https://doi.org/10.1097/RLU.0000000000003517
[17] Schramm, N., Rominger, A., Schmidt, C., et al. (2013) De-tection of Underlying Malignancy in Patients with Paraneoplastic Neurological Syndromes: Comparison of 18F-FDG PET/CT and Contrast-Enhanced CT. European Journal of Nuclear Medicine and Molecular Imaging, 40, 1014-1024.
https://doi.org/10.1007/s00259-013-2372-4
[18] Piscopo, P., Manzini, V., Rivabene, R., et al. (2022) A Plasma Circular RNA Profile Differentiates Subjects with Alzheimer’s Disease and Mild Cognitive Impairment from Healthy Controls. International Journal of Molecular Sciences, 23, Article No. 13232.
https://doi.org/10.3390/ijms232113232
[19] Kumar, A. and Chugani, H.T. (2013) The Role of Radionuclide Imag-ing in Epilepsy, Part 1: Sporadic Temporal and Extratemporal Lobe Epilepsy. Journal of Nuclear Medicine, 54, 1775-1781.
[20] Patel, D.C., Tewari, B.P., Chaunsali, L., et al. (2019) Neuron-Glia Interactions in the Pathophysiology of Epilepsy. Nature Reviews Neuroscience, 20, 282-297.
https://doi.org/10.1038/s41583-019-0126-4
[21] Reddy, S.D., Younus, I., Sridhar, V., et al. (2019) Neuroimaging Biomarkers of Experimental Epileptogenesis and Refractory Epilepsy. International Journal of Molecular Sciences, 20, Article No. 220.
https://doi.org/10.3390/ijms20010220
[22] Barrington, S.F., Koutroumanidis, M., Agathonikou, A., et al. (1998) Clinical Value of “ictal” FDG-Positron Emission Tomography and the Routine Use of Simultaneous Scalp EEG Studies in Patients with Intractable Partial Epilepsies. Epilepsia, 39, 753-766.
https://doi.org/10.1111/j.1528-1157.1998.tb01162.x
[23] Lagarde, S., Boucekine, M., Mcgonigal, A., et al. (2020) Relationship between PET Metabolism and SEEG Epileptogenicity in Focal Lesional Epilepsy. European Journal of Nu-clear Medicine and Molecular Imaging, 47, 3130-3142.
https://doi.org/10.1007/s00259-020-04791-1
[24] Mendes Coelho, V.C., Morita, M.E., Amorim, B.J., et al. (2017) Automated Online Quantification Method for 18F-FDG Positron Emission Tomography/CT Improves Detection of the Epileptogenic Zone in Patients with Pharmacoresistant Epilepsy. Frontiers in Neurology, 8, Article No. 453.
https://doi.org/10.3389/fneur.2017.00453
[25] Gaillard, W.D., Fazilat, S., White, S., et al. (1995) Interictal Metabo-lism and Blood Flow Are Uncoupled in Temporal Lobe Cortex of Patients with Complex Partial Epilepsy. Neurology, 45, 1841-1847.
https://doi.org/10.1212/WNL.45.10.1841
[26] 候亚琴, 郭坤, 尚琨, 等. 局灶性皮质发育不良所致颞叶癫及颞叶外癫的18F-FDG PET/CT影像分析[J]. 中华核医学与分子影像杂志, 2021, 41(10): 607-612.
https://doi.org/10.3760/cma.j.cn321828-20200511-00187
[27] Chassoux, F., Rodrigo, S., Semah, F., et al. (2010) FDG-PET Improves Surgical Outcome in Negative MRI Taylor-Type Focal Cortical Dysplasias. Neurology, 75, 2168-2175.
https://doi.org/10.1212/WNL.0b013e31820203a9
[28] Pyatigorskaya, N., Habert, M.O. and Ro-zenblum, L. (2020) Contribution of PET-MRI in Brain Diseases in Clinical Practice. Current Opinion in Neurology, 33, 430-438.
https://doi.org/10.1097/WCO.0000000000000841
[29] Oldan, J.D., Shin, H.W., Khandani, A.H., et al. (2018) Subsequent Experience in Hybrid PET-MRI for Evaluation of Refractory Focal Onset Epilepsy. Seizure, 61, 128-134.
https://doi.org/10.1016/j.seizure.2018.07.022
[30] Borbely, K., Emri, M., Kenessey, I., et al. (2022) PET/MRI in the Presurgical Evaluation of Patients with Epilepsy: A Concordance Analysis. Biomedicines, 10, Article No. 949.
https://doi.org/10.3390/biomedicines10050949
[31] Guo, K., Cui, B., Shang, K., et al. (2021) Assessment of Localization Accuracy and Postsurgical Prediction of Simultaneous 18F-FDG PET/MRI in Refractory Epilepsy Patients. European Radiology, 31, 6974-6982.
https://doi.org/10.1007/s00330-021-07738-8
[32] Garibotto, V., Heinzer, S., Vulliemoz, S., et al. (2013) Clinical Applications of Hybrid PET/MRI in Neuroimaging. Clinical Nuclear Medicine, 38, e13-e18.
https://doi.org/10.1097/RLU.0b013e3182638ea6
[33] Ding, Y.S., Chen, B.B., Glielmi, C., et al. (2014) A Pilot Study in Epilepsy Patients Using Simultaneous PET/MR. American Journal of Nuclear Medicine and Molecular Imag-ing, 4, 459-470.
[34] Shin, H.W., Jewells, V., Sheikh, A., et al. (2015) Initial Experience in Hybrid PET-MRI for Eval-uation of Refractory Focal Onset Epilepsy. Seizure, 31, 1-4.
https://doi.org/10.1016/j.seizure.2015.06.010
[35] Flaus, A., Mellerio, C., Rodrigo, S., et al. (2021) (18)F-FDG PET/MR in Focal Epilepsy: A New Step for Improving the Detection of Epileptogenic Lesions. Epilepsy Research, 178, Article ID: 106819.
https://doi.org/10.1016/j.eplepsyres.2021.106819
[36] 郭坤, 尚琨, 崔碧霄, 等. 18F-FDG PET/MR对MRI阴性药物难治性癫灶的定位价值[J]. 中华核医学与分子影像杂志, 2021, 41(7): 410-414.
[37] Duncan, J.S., Winston, G.P., Koepp, M.J., et al. (2016) Brain Imaging in the Assessment for Epilepsy Surgery. The Lancet Neurology, 15, 420-433.
https://doi.org/10.1016/S1474-4422(15)00383-X
[38] Muzik, O., Chugani, D.C., Juhasz, C., et al. (2000) Statistical Parametric Mapping: Assessment of Application in Children. Neuroimage, 12, 538-549.
https://doi.org/10.1006/nimg.2000.0651
[39] Vinton, A.B., Carne, R., Hicks, R.J., et al. (2007) The Extent of Re-section of FDG-PET Hypometabolism Relates to Outcome of Temporal Lobectomy. Brain, 130, 548-560.
https://doi.org/10.1093/brain/awl232
[40] Sun, K., Ren, Z., Yang, D., et al. (2021) Voxel-Based Morphometric MRI Post-Processing and PET/MRI Co-Registration Reveal Subtle Abnormalities in Cingulate Epilepsy. Epilepsy Re-search, 171, Article ID: 106568.
https://doi.org/10.1016/j.eplepsyres.2021.106568
[41] Wagner, J., Weber, B., Urbach, H., et al. (2011) Morpho-metric MRI Analysis Improves Detection of Focal Cortical Dysplasia Type II. Brain, 134, 2844-2854.
https://doi.org/10.1093/brain/awr204
[42] Guo, K., Wang, J., Wang, Z., et al. (2022) Morphometric Analysis Pro-gram and Quantitative Positron Emission Tomography in Presurgical Localization in MRI-Negative Epilepsies: A Simul-taneous PET/MRI Study. European Journal of Nuclear Medicine and Molecular Imaging, 49, 1930-1938.
https://doi.org/10.1007/s00259-021-05657-w
[43] Tan, Y.L., Kim, H., Lee, S., et al. (2018) Quantitative Surface Analysis of Combined MRI and PET Enhances Detection of Focal Cortical Dysplasias. Neuroimage, 166, 10-18.
https://doi.org/10.1016/j.neuroimage.2017.10.065
[44] Peter, J., Houshmand, S., Werner, T.J., et al. (2016) Appli-cations of Global Quantitative 18F-FDG-PET Analysis in Temporal Lobe Epilepsy. Nuclear Medicine Communications, 37, 223-230.
https://doi.org/10.1097/MNM.0000000000000440
[45] Shih, Y.C., Lee, T.H., Yu, H.Y., et al. (2022) Machine Learning Quantitative Analysis of FDG PET Images of Medial Temporal Lobe Epilepsy Patients. Clinical Nuclear Medi-cine, 47, 287-293.
https://doi.org/10.1097/RLU.0000000000004072
[46] Traub-Weidinger, T., Muzik, O., Sundar, L.K.S., et al. (2020) Utility of Absolute Quantification in Non-Lesional Extratemporal Lobe Epilepsy Using FDG PET/MR Imaging. Frontiers in Neurology, 11, Article No. 54.
https://doi.org/10.3389/fneur.2020.00054