|
[1]
|
Sousa, A.P., Costa, R., Alves, M.G., Soares, R., Baylina, P. and Fernandes, R. (2022) The Impact of Metabolic Syndrome and Type 2 Diabetes Mellitus on Prostate Cancer. Frontiers in Cell and Developmental Biology, 10, Article 843458. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Papsidero, L.D., Wang, M.C., Valenzuela, L.A., Murphy, G.P. and Chu, T.M. (1980) Prostate Antigen in Serum of Patients with Prostate Cancer. Cancer Research, 40, 2428-2432.
|
|
[3]
|
Shortliffe, L.M., Wehner, N. and Stamey, T.A. (1981) Use of a Solid-Phase Radioimmunoassay and Formalin-Fixed Whole Bacterial Antigen in the Detection of Antigen-Specific Immunoglobulin in Prostatic Fluid. Clinical Investment, 67, 790-799. [Google Scholar] [CrossRef]
|
|
[4]
|
Mikolajczyk, S.D., Song, Y., Wong, J.R., Matson, R.S. and Rittenhouse, H.G. (2004) Are Multiple Markers the Future of Prostate Cancer Diagnosis? Clinical Biochemistry, 37, 519-528. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Komatsu, K., Wehner, N., Prestigiacomo, A.E., Chen, Z. and Stamey, T.A. (1996) Physiologic (Intraindividual) Variation of Serum Prostate-Specific Antigen in 814 Men from a Screening Population. Urology, 47, 343-346. [Google Scholar] [CrossRef]
|
|
[6]
|
Thompson, I.M., Pauler, D.K., Goodman, P.J., Tangen, C.M., Lucia, M.S., Parnes, H.L., Minasian, L.M., Ford, L.G., Lippman, S.M., Crawford, E.D., Crowley, J.J. and Coltman Jr, C.A. (2004) Prevalence of Prostate Cancer among Men with a Prostate-Specific Antigen Level ≤ 4.0 ng per Milliliter. The New England Journal of Medicine, 350, 2239-2246. [Google Scholar] [CrossRef]
|
|
[7]
|
Nadji, M., Tabei, S.J., Castro, A., et al. (1981) Prostatic-Specific Antigen: An Immunohistologic Marker for Prostatic Neoplasms. Cancer, 48, 1229-1232. [Google Scholar] [CrossRef]
|
|
[8]
|
Wang, L.G., Liu, X.M., Kreis, W. and Budman, D.R. (1997) Down-Regulation of Prostate-Specific Antigen Expression by Finasteride through Inhibition of Complex Formation between Androgen Receptor and Steroid Receptor-Binding Consensus in the Promoter of the PSA Gene in LNCaP Cells. Cancer Research, 57, 714-719.
|
|
[9]
|
Chybowski, F.M., Bergstralh, E.J. and Oesterling, J.E. (1992) Effect of Digital Rectal Examination on Serum Prostate Specific Antigen Concentration: Results of a Randomized Study. Journal of Urology, 148, 83-86. [Google Scholar] [CrossRef]
|
|
[10]
|
Herschman, J.D., Smith, D.S. and Catalona, W.J. (1997) Effect of Ejaculation on Serum Total and Free Prostate-Specific Antigen Concentrations. Urology, 50, 239-243. [Google Scholar] [CrossRef]
|
|
[11]
|
Tchetgen, M.B.N. and Oesterling, J.E. (1997) Effects of Prostatitis, Urinary Retention, Ejaculation and Walking on Serum Prostate Specific Antigen Concentration. Urologic Clinics of North America, 24, 283-291. [Google Scholar] [CrossRef]
|
|
[12]
|
Delongchamps, N.B., de la Roza, G., Jones, R., Jumbelic, M. and Haas, G.P. (2009) Saturation Biopsies on Autopsicd Prostates for Detecting and Characterizing Prostate Cancer. BJU International, 103, 49-54. [Google Scholar] [CrossRef]
|
|
[13]
|
Wagenlehner, F.M., van Oostrum, E., Tenke, P., et al. (2013) Infective Complications after Prostate Biopsy: Outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a Prospective Multinational Multicentre Prostate Biopsy Study. European Urology, 63, 521-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, Z.Y., Yang, C., Luo, J., Deng, S.L., Wu, B. and Chen, M. (2019) To Establish the Reference Interval of Serum [-2]proPSA (p2PSA), %p2PSA and Prostate Health Index in Healthy Men. OncoTargets and Treatment, 12, 6453-6460. [Google Scholar] [CrossRef]
|
|
[15]
|
Artibani, W. (2012) Markers in the Diagnosis of Prostate Cancer: Biomarkers. Peking University International, 10, 8-13. [Google Scholar] [CrossRef]
|
|
[16]
|
Takayama, T.K., Fujikawa, K. and David, E.W. (1997) Characterization of the Precursor of Prostate-Specific Antigen. Activation by Trypsin and by Human Glandular Kallikrein. Journal of Biological Chemistry, 272, 21582-21588. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chan, T.Y., Mikolajczyk, S.D., Lecksell, K., Shue, M.J., Rittenhouse, H.G., et al. (2003) Immunohistochemical Staining of Prostate Cancer with Monoclonal Antibodies to the Precursor of Prostate-Specific Antigen. Urology, 62, 177-181. [Google Scholar] [CrossRef]
|
|
[18]
|
Huang, Y.Q., Sun, T., Zhong, W.D. and Wu, C.L. (2014) Clinical Manifestations of serum [-2]proPSA Derivatives, %p2PSA and PHI in Detection and Management of Prostate Cancer. American Journal of Clinical and Experimental Urology, 2, 343-350.
|
|
[19]
|
王新敏, 章乐, 王勤章, 等. 血清PSA、f/t-PSA比值在前列腺癌诊断中的意义[J]. 农垦医学, 2011, 33(5): 395-397.
|
|
[20]
|
Sokol, L.J., Wang, Y., Feng, Z., Kagan, J., Partin, A.W., Sanda, M.G., et al. (2008) [-2]Proenzyme Prostate Specific Antigen for Prostate Cancer Detection: A National Cancer Institute Early Detection Research Network Validation Study. Journal of Urology, 180, 539-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
罗振国, 杜剑飞, 毛秀娟, 赵庆, 徐炜东, 高福生, 毕睿, 宋歌, 候雪飞, 陈向峰. PHI值联合~(18)F-FDG PET/CT检查的SUVmax值对于前列腺癌的早期诊断及恶性程度的评估价值[J]. 中国男科学杂志, 2022, 36(3): 44-49.
|
|
[22]
|
Sciarra, A., Gentilucci, A., Salciccia, S., Pierella, F., Del Bianco, F., Gentile, V., et al. (2016) Prognostic Value of Inflammation in Prostate Cancer Progression and Response to Treatment: An Important Review. Journal of Inflammation, 13, Article No. 35.
|
|
[23]
|
de Bono, J.S., Guo, C., Gurel, B., De Marzo, A.M., Sfanos, K.S., Mani, R.S., Gil, J., Drake, C.G. and Alimonti, A. (2020) Prostate Carcinogenesis: Inflammatory Storms. Nature Reviews Cancer, 20, 455-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
裴家鑫, 周维, 唐娜. MiR-199a在泌尿系统肿瘤中的相关研究进展[J]. 农垦医学, 2021, 43(2): 148-151, 169.
|
|
[25]
|
Perletti, G., Monti, E., Magri, V., Cai, T., Cleves, A., Trinchieri, A. and Montanari, E. (2017) The Association between Prostatitis and Prostate Cancer. Systematic Review and Meta-Analysis. Archivio Italiano di Urologia e Andrologia, 89, 259-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ficarra, V., Sekulovic, S., Zattoni, F., Zazzera, M. and Novara, G. (2013) Why and How to Assess Chronic Prostate Inflammation. European Urology Supplements, 12, 110-115. [Google Scholar] [CrossRef]
|
|
[27]
|
Gonzalez, H., Hagerling, C. and Werb, Z. (2018) Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes & Development, 32, 1267-1284. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hwang, B.O., Park, S.Y., Cho, E.S., Zhang, X., Lee, S.K., Ahn, H.J., Chun, K.S., Chung, W.Y. and Song, N.Y. (2021) Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Frontiers in Immunology, 12, Article 807600. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hwang, B., Park, S., Cho, E.S., Zhang, X., Lee, S.K., Ahn, H., Chun, K., Chung, W. and Song, N. (2021) Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Frontiers in Immunology, 12, Article 807600. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gutiontov, S.I., Cui, K.S., Miller, J.L. and Liao, S.L. (2020) Improved Outcomes after Radiotherapy for Prostate Cancer: Anticoagulation, Antiplatelet Therapy, and Platelet Count as Key Factors in Disease Progression. Cancer Medicine, 9, 4667-4675. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xiong, T.T., He, P., Zhou, M., Zhong, D., Yang, T., He, W.H., et al. (2022) Glutamate Blunts Cell-Killing Effects of Neutrophils in Tumor Microenvironment. Cancer Science, 113, 1955-1967. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chang, C.Y., Tai, J.A., Li, S., Nishikawa, T. and Kaneda, Y. (2016) Virus-Stimulated Neutrophils in the Tumor Microenvironment Enhance T Cell-Mediated Anti-Tumor Immunity. Oncotarget, 7, 42195-42207. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chapel, W.H., Abrams, S.L., Letteri Piapon, K., Fitzgerald, T.L., Matelli, A.M., Cocoa, L., et al. (2016) Novel Roles of Androgen Receptor, Epidermal Growth Factor Receptor, TP53, Regulatory RNAs, NF-κ-B, Chromosomal Translocations, Neutrophil Associated Gelatinase, and Matrix Metalloproteinase-9 in Prostate Cancer and Prostate Cancer Stem Cells. Advanced Biological Regulation, 60, 64-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Griesalu-Tal, S., Dürberg, S., Baker, L., Chang, C., Eitan, M., Hediye-Zadeh, S., et al. (2021) Metastatically Entrained Eosinophils Enhance Lymphocyte-Mediated Anti-Tumor Immunity. Cancer Research, 81, 5555-5571. [Google Scholar] [CrossRef]
|
|
[35]
|
Huang, C., Li, Z.H., Zhu, J.L., et al. (2021) Systems Pharmacology Dissection of Epimedium Targeting Tumor Microenvironment to Enhance Cytotoxic T Lymphocyte Responses in Lung Cancer. Aging, 13, 2912-2940. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gudeng, M.J., Debok, G.H., Levers, N., Daimen, T. and Naiman, H.W. (2011) The Prognostic Influence of Tumour-Infiltrating Lymphocytes in Cancer: A Systematic Review with Meta-Analysis. British Journal of Cancer, 105, 93-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Xu, Z.P., Zhang, J., Zhong, Y.X., et al. (2021) Predictive Value of the Monocyte-to-Lymphocyte Ratio in the Diagnosis of Prostate Cancer. Medicine, 100, e27244. [Google Scholar] [CrossRef]
|
|
[38]
|
Ferro, M., Musi, G., Serino, A., Cozzi, G., Mistretta, F.A., Costa, B., et al. (2019) Neutrophil, Platelets, and Eosinophil to Lymphocyte Ratios Predict Gleason Score Upgrading in Low-Risk Prostate Cancer Patients. Urologia Internationalis, 102, 43-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Man, Y.N. and Chen, Y.F. (2019) Systemic Immune-Inflammation Index, Serum Albumin, and Fibrinogen Impact Prognosis in Castration-Resistant Prostate Cancer Patients Treated with First-Line Docetaxel. International Urology and Nephrology, 51, 2189-2199. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Dumauthioz, N., Labiano, S. and Romero, P. (2018) Tumor Resident Memory T Cells: New Players in Immune Surveillance and Therapy. Frontiers in Immunology, 9, Article 411458. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. and Kroemer, G. (2020) Immunostimulation with Chemotherapy in the Era of Immune Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 17, 725-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ribeiro, R., Monteiro, C., Cunha, V., Oliveira, M.J., Freitas, M., Fraga, A., Príncipe, P., Lobato, C., Lobo, F. and Morais, A. (2012) Human Periprostatic Adipose Tissue Promotes Prostate Cancer Aggressiveness in vitro. Journal of Experimental & Clinical Cancer Research, 31, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Martinez-Outschoorn, U.E., Sotgia, F. and Lisanti, M.P. (2014) Metabolic Asymmetry in Cancer: A “Balancing Act” That Promotes Tumor Growth. Cancer Cell, 26, 5-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Park, J., Morley, T.S., Kim, M., Clegg, D.J. and Scherer, P.E. (2014) Obesity and Cancer—Mechanisms of Tumor Progression and Recurrence. Nature Reviews Endocrinology, 10, 455-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Tong, Y., Wu, J., Huang, O., et al. (2020) IGF-1 Interacted with Obesity in Prognosis Prediction in HER2-Positive Breast Cancer Patients. Frontiers in Oncology, 10, Article 550. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Liotti, A., La Civita, E., Cennamo, M., Crocetto, F., Ferro, M., Guadagno, E., Insabato, L., Imbimbo, C., Palmieri, A., Mirone, V., Liguoro, P., Formisano, P., Beguinot, F. and Terracciano, D. (2021) Periprostatic Adipose Tissue Promotes Docetaxel Resistance in Prostate Cancer by Paracrine IGF-1 Upregulation of TUBB2B β-Tubulin Isoforms. The Prostate, 81, 407-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Sasaki, T., Sugino, Y., Kato, M., Nishikawa, K. and Kanda, H. (2020) Pre-Treatment Ratio of Periprostatic to Subcutaneous Fat Thickness on MRI Is an Independent Survival Predictor in Hormone-Naïve Men with Advanced Prostate Cancer. International Journal of Clinical Oncology, 25, 370-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sunami, Y., Rebelo, A. and Kleeff, J. (2017) Lipid Metabolism and Lipid Droplets in Pancreatic Cancer and Stellate Cells. Cancers, 10, Article 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Banerjee, S., Zare, R.N., Tibshirani, R.J., Kunder, C.A., Nolley, R. and Fan, R. (2017) Diagnose of Prostate Cancer by Desorption Electrospray Ionization Mass Spectrometry Imaging of Small Metabolites and Lipids. Proceedings of the National Academy of Sciences of the United States of America, 114, 3334-3339. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zadra, G., Ribeiro, C.F., Chetta, P., Ho, Y., Cacciatore, S., Gao, X., Syamala, S., Bango, C., Photopoulos, C., Huang, Y., Tyekucheva, S., Bastos, D.C., Tchaicha, J., Lawney, B., Uo, T., D’Anello, L., Csibi, A., Kalekar, R., Larimer, B., Ellis, L., Butler, L.M., Morrissey, C., McGovern, K., Palombella, V.J., Kutok, J.L., Mahmood, U., Bosari, S., Adams, J., Peluso, S., Dehm, S.M., Plymate, S.R. and Loda, M. (2019) Inhibition of de Novo Lipogenesis Targets Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Proceedings of the National Academy of Sciences of the United States of America, 116, 631-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zheng, Y., Jin, J., Gao, Y., Luo, C., Wu, X. and Liu, J. (2020) Phospholipase Cε Regulates Prostate Cancer Lipid Metabolism and Proliferation by Targeting AMP-Activated Protein Kinase (AMPK)/Sterol Regulatory Element-Binding Protein 1 (SREBP-1) Signaling Pathway. Medical Science Monitor, 26, e924328. [Google Scholar] [CrossRef]
|
|
[52]
|
Škara, L., Hujiek Turković, A., Pezelj, I., Vrtarić, A., Sinčić, N., Krušlin, B. and Ulamec, M. (2021) Prostate Cancer—Focus on Cholesterol. Cancers, 13, Article 4696. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, H.C., Ou, C.H., Huang, Y.C., Hou, B., Clayton, C.J., Lin, Y.S., Hu, C.Y. and Lin, S.C. (2021) YAP1 Overexpression Promotes the Development of Enzalutamide Resistance by Inducing Cancer Stemness and Lipid Metabolism in Prostate Cancer. Oncogene, 40, 2407-2421.
|
|
[54]
|
Hryniewicz-Jankowska, A., Augoff, K. and Sikorski, A.F. (2019) The Role of Cholesterol and Cholesterol-Driven Membrane Raft Domains in Prostate Cancer. Experimental Biology and Medicine, 244, 1053-1061. [Google Scholar] [CrossRef] [PubMed]
|