[1]
|
Naahidi, S., Jafari, M., Logan, M., et al. (2017) Biocompatibility of Hydrogel-Based Scaffolds for Tissue Engineering Applications. Biotechnology Advances, 35, 530-544. https://doi.org/10.1016/j.biotechadv.2017.05.006
|
[2]
|
Fazli, Y. and Shariatinia, Z. (2017) Controlled Release of Cefazolin Sodium Antibiotic Drug from Electrospun Chi-tosan-Polyethylene Oxide Nanofibrous Mats. Materials Science & Engineering C-Materials for Biological Applications, 71, 641-652. https://doi.org/10.1016/j.msec.2016.10.048
|
[3]
|
Fazli, Y., Shariatinia, Z., Kohsari, I., et al. (2016) A Novel Chitosan-Polyethylene Oxide Nanofibrous Mat Designed for Controlled Co-Release of Hydrocortisone and Imipenem/Cilastatin Drugs. International Journal of Pharmaceutics, 513, 636-647. https://doi.org/10.1016/j.ijpharm.2016.09.078
|
[4]
|
Kurniasih, M., Purwati, Cahyati, T., et al. (2018) Carboxyme-thyl Chitosan as an Antifungal Agent on Gauze. International Journal of Biological Macromolecules, 119, 166-171. https://doi.org/10.1016/j.ijbiomac.2018.07.038
|
[5]
|
Shariatinia, Z. and Bagherpour, A. (2018) Synthesis of Zeolite NaY and Its Nanocomposites with Chitosan as Adsorbents for Lead(II) Removal from Aqueous Solution. Powder Technology, 338, 744-763.
https://doi.org/10.1016/j.powtec.2018.07.082
|
[6]
|
Shariatinia, Z. and Jalali, A.M. (2018) Chitosan-Based Hydro-gels: Preparation, Properties and Applications. International Journal of Biological Macromolecules, 115, 194-220. https://doi.org/10.1016/j.ijbiomac.2018.04.034
|
[7]
|
Kim, T.H., Jeong, G.W. and Nah, J.W. (2017) Preparation and Anticancer Effect of Transferrin-Modified pH-Sensitive Polymeric Drug Nanoparticle for Targeted Cancer Therapy. Journal of Industrial and Engineering Chemistry, 54, 298-303.
https://doi.org/10.1016/j.jiec.2017.06.004
|
[8]
|
Chen, K.H., Guo, B.Z. and Luo, J.W. (2017) Quaternized Carbox-ymethyl Chitosan/Organic Montmorillonite Nanocomposite as a Novel Cosmetic Ingredient against Skin Aging. Carbo-hydrate Polymers, 173, 100-106.
https://doi.org/10.1016/j.carbpol.2017.05.088
|
[9]
|
Xu, W.H., Wang, Z.Y., Liu, Y., et al. (2018) Carboxymethyl Chitosan/Gelatin/Hyaluronic Acid Blended-Membranes as Epithelia Transplanting Scaffold for Corneal Wound Healing. Carbohydrate Polymers, 192, 240-250.
https://doi.org/10.1016/j.carbpol.2018.03.033
|
[10]
|
Yin, Y.Y., Dang, Q.F., Liu, C.S., et al. (2017) Itaconic Acid Grafted Carboxymethyl Chitosan and Its Nanoparticles: Preparation, Characterization and Evaluation. International Journal of Biological Macromolecules, 102, 10-18.
https://doi.org/10.1016/j.ijbiomac.2017.04.005
|
[11]
|
Sun, J., Yang, L., Jiang, M.M., et al. (2017) Stability and Ac-tivity of Immobilized Trypsin on Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles Cross-Linked with Carbodiimide and Glutaraldehyde. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1054, 57-63.
https://doi.org/10.1016/j.jchromb.2017.04.016
|
[12]
|
Jiang, Z.W., Chi, J.H., Han, B.Q., et al. (2017) Preparation and Pharmacological Evaluation of Norcantharidin-Conjugated Carboxymethyl Chitosan in Mice Bearing Hepatocellular Car-cinoma. Carbohydrate Polymers, 174, 282-290.
https://doi.org/10.1016/j.carbpol.2017.06.072
|
[13]
|
Huang, G.Q., Liu, L.N., Han, X.N., et al. (2017) Intes-tine-Targeted Delivery Potency of the O-Carboxymethyl Chitosangum Arabic Coacervate: Effects of Coacervation Acid-ity and Possible Mechanism. Materials Science and Engineering C-Materials for Biological Applications, 79, 423-429. https://doi.org/10.1016/j.msec.2017.05.074
|
[14]
|
Wahid, F., Wang, H.S., Zhong, C., et al. (2017) Facile Fabrication of Moldable Antibacterial Carboxymethyl Chitosan Supramolecular Hydrogels Cross-Linked by Metal Ions Complexa-tion. Carbohydrate Polymers, 165, 455-461.
https://doi.org/10.1016/j.carbpol.2017.02.085
|
[15]
|
Shariatinia, Z. and Zahraee, Z. (2017) Controlled Release of Metformin from Chitosan-Based Nanocomposite Films Containing Mesoporous MCM-41 Nanoparticles as Novel Drug Delivery Systems. Journal of Colloid and Interface Science, 501, 60-76. https://doi.org/10.1016/j.jcis.2017.04.036
|
[16]
|
Bai, X.Y., Kong, M., Xia, G.X., et al. (2017) Systematic Investiga-tion of Fabrication Conditions of Nanocarrier Based on Carboxymethyl Chitosan for Sustained Release of Insulin. Inter-national Journal of Biological Macromolecules, 102, 468-474. https://doi.org/10.1016/j.ijbiomac.2017.03.181
|
[17]
|
Sharifi, F., Atyabi, S.M., Norouzian, D., et al. (2018) Poly-caprolactone/Carboxymethyl Chitosan Nanofibrous Tissue Engineering Application. International Journal of Biological Macromolecules, 115, 243-248.
https://doi.org/10.1016/j.ijbiomac.2018.04.045
|
[18]
|
Fonseca-Santos, B. and Chorilli, M. (2017) An Overview of Carboxymethyl Derivatives of Chitosan: Their Use as Biomaterials and Drug Delivery Systems. Materials Science & En-gineering C-Materials for Biological Applications, 77, 1349-1362.
https://doi.org/10.1016/j.msec.2017.03.198
|
[19]
|
Zhang, E.H., Xing, R.E., Liu, S., et al. (2017) Comparison in Docetaxel-Loaded Nanoparticles Based on Three Different Carboxymethyl Chitosans. International Journal of Biological Macromolecules, 101, 1012-1018.
https://doi.org/10.1016/j.ijbiomac.2017.03.195
|
[20]
|
Liu, M., Min, L., Zhu, C., et al. (2017) Preparation, Character-ization and Antioxidant Activity of Silk Peptides Grafted Carboxymethyl Chitosan. International Journal of Biological Macromolecules, 104, 732-738.
https://doi.org/10.1016/j.ijbiomac.2017.06.071
|
[21]
|
尤静, 李姣姣, 梁琳琳, 等. 羧甲基壳聚糖-油酸胶束的制备[J]. 化工科技, 2020, 28(3): 27-31.
|
[22]
|
张尚文, 韩丹丹, 汪鑫, 等. 聚乙烯醇-羧甲基壳聚糖复合水凝胶药物缓释体系的制备及评价[J]. 化工新型材料, 2020, 48(6): 273-277.
|
[23]
|
刘显武, 杨子明, 陈煜, 等. 光热敏感型羧甲基壳聚糖纳米微球的制备及光热性能[J]. 功能材料, 2020, 51(3): 3200-3207.
|
[24]
|
Zhang, Q., Zhou, X., Du, H., et al. (2023) Bifunctional Hydrogel-Integrated 3D Printed Scaffold for Repairing Infected Bone Defects. ACS Biomaterials Science & Engineering, 9, 4583-4596.
https://doi.org/10.1021/acsbiomaterials.3c00564
|
[25]
|
Lu, Y., Li, L.H., Zhu, Y., et al. (2018) Multifunctional Cop-per-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation. ACS Applied Materials & Interfaces, 10, 127-138. https://doi.org/10.1021/acsami.7b13750
|
[26]
|
Chen, X., Li, Y., Qiu, Y.L., et al. (2023) Amino Carboxymethyl Chi-tosan/Dialdehyde Starch/Polyvinyl Alcohol Double-Layer Film Loaded with ε-Polylysine. Food Chemistry, 428, Article ID: 136775.
https://doi.org/10.1016/j.foodchem.2023.136775
|
[27]
|
Gan, S.Q., Zheng, Z., Zhang, M., et al. (2023) Lyophilized Platelet-Rich Fibrin Exudate-Loaded Carboxymethyl Chitosan/GelMA Hydrogel for Efficient Bone Defect Repair. ACS Applied Materials & Interfaces, 15, 26349-26362.
https://doi.org/10.1021/acsami.3c02528
|
[28]
|
崔翔瑞, 苏崟, 王英飒, 等. 叶酸修饰羧甲基壳聚糖纳米药物载体的制备及表征[J]. 精细与专用化学品, 2019, 27(3): 30-32.
|
[29]
|
Zhou, G., Zhang, J., Tai, J., et al. (2017) Compar-ison of Chitosan Microsphere versus O-Carboxymethyl Chitosan Microsphere for Drug Delivery Systems. Journal of Bioactive and Compatible Polymers, 32, 469-486.
https://doi.org/10.1177/0883911517690757
|
[30]
|
Qiu, P., Li, M., Chen, K., et al. (2020) Periosteal Matrix-Derived Hydrogel Promotes Bone Repair through an Early Immune Regulation Coupled with Enhanced Angio- and Osteogenesis. Biomaterials, 227, 119552.
https://doi.org/10.1016/j.biomaterials.2019.119552
|
[31]
|
Chen, C., Li, H., Pan, J.F., et al. (2015) Biodegradable Composite Scaffolds of Bioactive Glass/Chitosan/Carboxy- methyl Cellulose for Hemostatic and Bone Regeneration. Bi-otechnology Letters, 37, 457-465.
https://doi.org/10.1007/s10529-014-1697-9
|
[32]
|
李海浪, 叶廷秀. 靶向药物载体材料羧甲基壳聚糖-聚乙二醇-叶酸的制备与表征[J]. 北方药学, 2018, 15(12): 136-137+142.
|
[33]
|
杨安平, 朱水源. 靶向性载体材料半乳糖季铵化羧甲基壳聚糖的合成[J]. 广州化工, 2017, 45(22): 23-26.
|
[34]
|
Zhao, Y., Li, R., Liu, Y., et al. (2023) An Injectable, Self-Healable, Antibacterial, and Pro-Healing Oxidized Pullulan Polysaccharide/Carboxymethyl Chitosan Hydrogel for Early Protection of Open Abdominal Wounds. International Journal of Biological Macromolecules, 250, Article ID: 126282. https://doi.org/10.1016/j.ijbiomac.2023.126282
|
[35]
|
Tian, Z.Z., Guo, Y.Y., Yang, X.Y., et al. (2022) Nano Calcium-Deficient Hydroxyapatite/O-Carboxymethyl Chitosan-CaCl2 Microspheres Loaded with Rhein for Bone Defect Repair. Journal of Bionic Engineering, 19, 1087-1099.
https://doi.org/10.1007/s42235-022-00179-z
|
[36]
|
Xu, Z., Zou, L., Xie, F., et al. (2022) Biocompatible Carbox-ymethyl Chitosan/GO-Based Sponge to Improve the Efficiency of Hemostasis and Wound Healing. ACS Applied Materi-als & Interfaces, 14, 44799-44808.
https://doi.org/10.1021/acsami.2c09309
|
[37]
|
Li, M.X., Xu, L., Ma, F.B., et al. (2023) Fabrication of Carboxyme-thyl Chitosan-Strontium Chondroitin Sulfate Composites for Potential Bone Regeneration. Polymer Testing, 123, Article ID: 108053.
https://doi.org/10.1016/j.polymertesting.2023.108053
|
[38]
|
陈凌峰, 沈鑫, 李荣烨, 等. 新型羧甲基壳聚糖-聚乳酸-聚乙二醇共聚物合成及细胞相容性[J]. 生物医学工程与临床, 2018, 22(5): 506-510.
|
[39]
|
Shariatinia, Z. (2018) Carboxymethyl Chitosan: Properties and Biomedical Applications. International Journal of Biological Macromolecules, 120, 1406-1419. https://doi.org/10.1016/j.ijbiomac.2018.09.131
|
[40]
|
Yu, L., Gao, T., Li, W., et al. (2023) Car-boxymethyl Chitosan-Alginate Enhances Bone Repair Effects of Magnesium Phosphate Bone Cement by Activating the FAK-Wnt Pathway. Bioactive Materials, 20, 598-609.
https://doi.org/10.1016/j.bioactmat.2022.06.017
|
[41]
|
刘举慧, 赵峰, 郭建峰. pH敏感性叶酸修饰羧甲基壳聚糖/CaCO3混合纳米球作为药物载体的研究[J]. 现代化工, 2018, 38(4): 135-138.
|
[42]
|
Zhang, F., Zhang, S., Lin, R., et al. (2023) Injectable Multifunctional Carboxymethyl Chitosan/Hyaluronic Acid Hydrogel for Drug Delivery Systems. International Journal of Biological Macromolecules, 249, Article ID: 125801.
https://doi.org/10.1016/j.ijbiomac.2023.125801
|
[43]
|
Chen, M., Tan, H., Xu, W., et al. (2022) A Self-Healing, Magnetic and Injectable Biopolymer Hydrogel Generated by Dual Cross-Linking for Drug Delivery and Bone Repair. Acta Biomaterialia, 153, 159-177.
https://doi.org/10.1016/j.actbio.2022.09.036
|
[44]
|
Yu, R., Cornette De Saint-Cyr, L., Soussan, L., et al. (2021) An-ti-Bacterial Dynamic Hydrogels Prepared from O-Carboxymethyl Chitosan by Dual Imine Bond Crosslinking for Bio-medical Applications. International Journal of Biological Macromolecules, 167, 1146-1155. https://doi.org/10.1016/j.ijbiomac.2020.11.068
|
[45]
|
Qian, J., Wang, J., Zhang, W., et al. (2023) Corro-sion-Tailoring, Osteogenic, Anti-Inflammatory, and Antibacterial Aspirin-Loaded Organometallic Hydrogel Composite Coating on Biodegradable Zn for Orthopedic Applications. Biomaterials Advances, 153, Article ID: 213536. https://doi.org/10.1016/j.bioadv.2023.213536
|
[46]
|
Patel, P.K., Pandey, L.M. and Uppaluri, R.V.S. (2023) Synthe-sized Carboxymethyl-Chitosan Variant Composites for Cyclic Adsorption-Desorption Based Removal of Fe, Pb, and Cu. Chemosphere, 340, Article ID: 139780.
https://doi.org/10.1016/j.chemosphere.2023.139780
|
[47]
|
Upadhyaya, L., Singh, J., Agarwal, V., et al. (2013) Bi-omedical Applications of Carboxymethyl Chitosans. Carbohydrate Polymers, 91, 452-466. https://doi.org/10.1016/j.carbpol.2012.07.076
|
[48]
|
Wu, P., Huang, R., Chen, C., et al. (2022) Ap-tamer-AuNP-Conjugated Carboxymethyl Chitosan-Functionalized Graphene Oxide for Colorimetric Identification of Salmonella typhimurium. Microchimica Acta, 189, Article No. 408.
https://doi.org/10.1007/s00604-022-05494-0
|