|
[1]
|
Halbrook, C., Lyssiotis, C., Pasca di Magliano, M. and Maitra, A. (2023) Pancreatic Cancer: Advances and Challenges. Cell, 186, 1729-1754. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Faur, A., Lazar, D. and Ghenciu, L. (2023) Artificial Intelligence as a Noninvasive Tool for Pancreatic Cancer Prediction and Diagnosis. World Journal of Gastro-enterology, 29, 1811-1823. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jan, Z., El Assadi, F., Abd-Alrazaq, A. and Jithesh, P. (2023) Artificial Intelligence for the Prediction and Early Diagnosis of Pancreatic Cancer: Scoping Review. Journal of Medical Internet Research, 25, e44248. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, L., Liu, Z., Liang, R., Wang, W., Zhu, R., Li, J., et al. (2022) Compre-hensive Machine-Learning Survival Framework Develops a Consensus Model in Large-Scale Multicenter Cohorts for Pancreatic Cancer. eLife, 11, e80150. [Google Scholar] [CrossRef]
|
|
[5]
|
Chen, W., Zhou, Y., Xie, F., Butler, R., Jeon, C., Luong, T., et al. (2023) Derivation and External Validation of Machine Learning-Based Model for Detection of Pancreatic Cancer. The American Journal of Gastroenterology, 118, 157-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kernbach, J. and Staartjes, V. (2020) Predicted Prognosis of Pancreatic Cancer Patients by Machine Learning-Letter. Clinical Cancer Re-search: An Official Journal of the American Association for Cancer Research, 26, 3891. [Google Scholar] [CrossRef]
|
|
[7]
|
Hayward, J., Alvarez, S., Ruiz, C., Sullivan, M., Tseng, J. and Whalen, G. (2010) Machine Learning of Clinical Performance in a Pancreatic Cancer Database. Artificial Intelligence in Medicine, 49, 187-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yokoyama, S., Hamada, T., Higashi, M., Matsuo, K., Maemura, K., Kurahara, H., et al. (2020) Predicted Prognosis of Patients with Pancreatic Cancer by Machine Learning. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 26, 2411-2421. [Google Scholar] [CrossRef]
|
|
[9]
|
Toyama, Y., Hotta, M., Motoi, F., Takanami, K., Mina-mimoto, R. and Takase, K. (2020) Prognostic Value of FDG-PET Radiomics with Machine Learning in Pancreatic Can-cer. Scientific Reports, 10, Article No. 17024. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Iwatate, Y., Hoshino, I., Yokota, H., Ishige, F., Itami, M., Mori, Y., et al. (2020) Radiogenomics for Predicting p53 Status, PD-L1 Expression, and Prognosis with Machine Learning in Pancreatic Cancer. British Journal of Cancer, 123, 1253-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sala Elarre, P., Oyaga-Iriarte, E., Yu, K., Baudin, V., Arbea Moreno, L., Carranza, O., et al. (2019) Use of Machine-Learning Algorithms in Intensified Preoperative Therapy of Pancreatic Cancer to Predict Individual Risk of Relapse. Cancers, 11, Article No. 606. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Malhotra, A., Rachet, B., Bonaventure, A., Pereira, S. and Woods, L. (2021) Can We Screen for Pancreatic Cancer? Identifying a Sub-Population of Patients at High Risk of Subsequent Di-agnosis Using Machine Learning Techniques Applied to Primary Care Data. PLOS ONE, 16, e0251876. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Klatte, D., Boekestijn, B., Onnekink, A., Dekker, F., van der Geest, L., Wasser, M., et al. (2023) Surveillance for Pancreatic Cancer in High-Risk Individuals Leads to Improved Outcomes: A Propensity Score-Matched Analysis. Gastroenterology, 23, e17-e18. [Google Scholar] [CrossRef]
|
|
[14]
|
Khajehpiri, B., Moghaddam, H., Forouzanfar, M., Lashgari, R., Ramos-Cejudo, J., Osorio, R., et al. (2022) Survival Analysis in Cognitively Normal Subjects and in Patients with Mild Cognitive Impairment Using a Proportional Hazards Model with Extreme Gradient Boosting Regression. Journal of Alz-heimer’s Disease: JAD, 85, 837-850. [Google Scholar] [CrossRef]
|
|
[15]
|
Chen, Y., Jia, Z., Mercola, D. and Xie, X. (2013) A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance Index. Computational and Mathematical Methods in Medicine, 2013, Article ID: 873595. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lin, J., Yin, M., Liu, L., Gao, J., Yu, C., Liu, X., et al. (2022) The De-velopment of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study. Cancers, 14, Article No. 4667. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Qiu, X., Gao, J., Yang, J., Hu, J., Hu, W., Kong, L., et al. (2020) A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Car-bon Ion Radiotherapy. Frontiers in Oncology, 10, Article ID: 551420. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tapak, L., Kosorok, M., Sadeghifar, M. and Hamidi, O. (2018) Multistate Recursively Imputed Survival Trees for Time-to-Event Data Analysis: An Application to AIDS and Mortality Post-HIV Infection Data. BMC Medical Research Methodology, 18, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tran, T., Lee, J., Gunathilake, M., Kim, J., Kim, S., Cho, H., et al. (2023) A Comparison of Machine Learning Models and Cox Proportional Hazards Models Regarding Their Ability to Predict the Risk of Gastrointestinal Cancer Based on Metabolic Syndrome and Its Components. Frontiers in Oncology, 13, Article ID: 1049787. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lee, E. and Go, O. (1997) Survival Analysis in Public Health Re-search. Annual Review of Public Health, 18, 105-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Foussard, N., Saulnier, P., Potier, L., Ragot, S., Schnei-der, F., Gand, E., et al. (2020) Relationship between Diabetic Retinopathy Stages and Risk of Major Lower-Extremity Arterial Disease in Patients with Type 2 Diabetes. Diabetes Care, 43, 2751-2759. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Dong, D., Tang, L., Li, Z., Fang, M., Gao, J., Shan, X., et al. (2019) De-velopment and Validation of an Individualized Nomogram to Identify Occult Peritoneal Metastasis in Patients with Ad-vanced Gastric Cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 30, 431-438. [Google Scholar] [CrossRef] [PubMed]
|