|
[1]
|
Chu, S. and Majumdar, A. (2012) Opportunities and Challenges for Asustainable Energy Future. Nature, 488, 294-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Armaroli, N. and Balzani, V. (2007) The Future of Energy Supply: Challenges and Opportunities. Angewandte Chemie International Edition, 46, 52-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bushuyev, O.S., De Luna, P., Dinh, C.T., et al. (2018) What Should We Make with CO2 and How Can We Make It? Joule, 2, 825-832. [Google Scholar] [CrossRef]
|
|
[4]
|
Schmid, A., Dordick, J., Hauer, B., Kiener, A., Wubbolts, M. and Witholt, B. (2001) Industrial Biocatalysis Today and Tomorrow. Nature, 409, 258-268. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liang, J., Wu, Q. and Cao, R. (2021) Reticular Frameworks and Their Derived Materials for CO2 Conversion by Thermos-Catalysis. EnergyChem, 3, Article ID: 100064. [Google Scholar] [CrossRef]
|
|
[6]
|
Kim, N., Nam, J.S., Jo, J., et al. (2021) Selective Photocatalytic Production of CH4 Using Zn-Based Polyoxometalate as Anonconventional CO2 Reduction Catalyst. Nanoscale Horizons, 6, 379-385. [Google Scholar] [CrossRef]
|
|
[7]
|
Ali, T., Muhammad, N., Qian, Y., et al. (2022) Recent Advances in Materialdesign and Reactor Engineering for Electrocatalytic Ambientnitrogen Fixation. Materials Chemistry Frontiers, 6, 843-879. [Google Scholar] [CrossRef]
|
|
[8]
|
Deng, B., Huang, M., Zhao, X., Mou, S. and Dong, F. (2021) Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction. ACS Catalysis, 12, 331-362. [Google Scholar] [CrossRef]
|
|
[9]
|
Angamuthu, R., Byers, P., Lutz, M., Spek, A.L. and Bouwman, E. (2010) Electrocatalytic CO2 Conversion to Oxalate by a Coppercomplex. Science, 327, 313-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Cui, X., Tang, C. and Zhang, Q. (2018) A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials, 8, Article ID: 1800369. [Google Scholar] [CrossRef]
|
|
[11]
|
Jin, S., Hao, Z., Zhang, K., Yan, Z. and Chen, J. (2021) Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization. Angewandte Chemie International Edition, 133, 20795-20816. [Google Scholar] [CrossRef]
|
|
[12]
|
Jiang, H., Luo, R., Li, Y. and Chen, W. (2022) Recent Advances Insolid—Liquid—Gas Three-Phase Interfaces in Electrocatalysis for Energy Conversion and Storage. EcoMat, 4, e12199. [Google Scholar] [CrossRef]
|
|
[13]
|
Li, J., Chen, G., Zhu, Y., et al. (2018) Efficient Electrocatalytic CO2 Reduction on a Three-Phase Interface. Nature Catalysis, 1, 592-600. [Google Scholar] [CrossRef]
|
|
[14]
|
Hahn, C. and Jaramillo, T.F. (2020) Using Microenvironments to Control Reactivity in CO2 Electrocatalysis. Joule, 4, 292-294. [Google Scholar] [CrossRef]
|
|
[15]
|
Lv, J.J., Yin, R., Zhou, L., et al. (2022) Microenvironment Engineering for the Electrocatalytic CO2 Reduction Reaction. Angewandte Chemie International Edition, 134, e202207252. [Google Scholar] [CrossRef]
|
|
[16]
|
Calvinho, K.U.D., Laursen, A.B., Yap, K.M.K., et al. (2018) Selective CO2 Reduction to C3 and C4 Oxyhydrocarbons on Nickel Phosphides at Overpotentials as Low as 10 mV. Energy & Environmental Science, 11, 2550-2559. [Google Scholar] [CrossRef]
|
|
[17]
|
Singh, M.R., Clark, E.L. and Bell, A.T. (2015) Effects of Electrolyte, Catalyst, and Membrane Composition and Operating Conditions on the Performance of Solar-Driven Electrochemical Reduction of Carbon Dioxide. Physical Chemistry Chemical Physics, 17, 18924-18936. [Google Scholar] [CrossRef]
|
|
[18]
|
Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., Göttle, A.J., Calle-Vallejo, F. and Koper, M. (2019) Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels. Nature Energy, 4, 732-745. [Google Scholar] [CrossRef]
|
|
[19]
|
Ross, M.B., De Luna, P., Li, Y., et al. (2019) Designing Materials for Electrochemical Carbon Dioxide Recycling. Nature Catalysis, 2, 648-658. [Google Scholar] [CrossRef]
|
|
[20]
|
Zheng, Y., Vasileff, A., Zhou, X., Jiao, Y., Jaroniec, M. and Qiao, S.Z. (2019) Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons Oncopper-Based Catalysts. Journal of American Chemistry Society, 141, 7646-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhi, X., Vasileff, A., Zheng, Y., Jiao, Y. and Qiao, S.Z. (2021) Role of Oxygen-Bound Reaction Intermediates in Selective Electrochemical CO2 Reduction. Energy & Environmental Science, 14, 3912-3930. [Google Scholar] [CrossRef]
|
|
[22]
|
Ma, T.Y. and Qiao, S.Z. (2014) Acid-Base Bifunctional Periodic Mesoporousmetal Phosphonates for Synergistically and Heterogeneously Catalyzing CO2 Conversion. ACS Catalysis, 4, 3847-3855. [Google Scholar] [CrossRef]
|
|
[23]
|
Zheng, M., Wang, P., Zhi, X., Yang, K., et al. (2022) Electrocatalytic CO2-to-C2+ with Ampere-Level Current on Heteroatom-Engineered Copper via Tuning *CO Intermediate Coverage. Journal of American Chemistry Society, 144, 14936-14944. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Van der Ham, C.J., Koper, M.T. and Hetterscheid, D.G. (2014) Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chemical Society Reviews, 43, 5183-5191. [Google Scholar] [CrossRef]
|
|
[25]
|
Wan, Y., Xu, J. and Lv, R. (2019) Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions. Materials Today, 27, 69-90. [Google Scholar] [CrossRef]
|
|
[26]
|
Köleli, F. and Röpke, T. (2006) Electrochemical Hydrogenation of Dinitrogen to Ammonia on a Polyaniline Electrode. Applied Catalysis B: Environmental, 62, 306-310. [Google Scholar] [CrossRef]
|
|
[27]
|
Kugler, K., Luhn, M., Schramm, J.A., Rahimi, K. and Wessling, M. (2015) Galvanic Deposition of Rh and Ru on Randomly Structured Ti Felts for the Electrochemical NH3 Synthesis. Physical Chemistry Chemical Physics, 17, 3768-3782. [Google Scholar] [CrossRef]
|
|
[28]
|
Kim, K., Lee, N., Yoo, C.Y., Kim, J.N., Yoon, H.C. and Han, J.I. (2016) Communication-Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure. Journal of the Electrochemical Society, 163, F610-F612. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhao, C. and Wang, J. (2016) Electrochemical Reduction of CO2 to Formate in Aqueous Solution Using Electro-Deposited Sncatalysts. Chemical Engineering Journal, 293, 161-170. [Google Scholar] [CrossRef]
|
|
[30]
|
Chen, D., Wang, Y., Liu, D., et al. (2020) Surface Composition Dominates the Electrocatalytic Reduction of CO2 on Ultrafine CuPd Nanoalloys. Carbon Energy, 2, 443-451. [Google Scholar] [CrossRef]
|
|
[31]
|
Bao, D., Zhang, Q., Meng, F.L., et al. (2017) Electrochemical Reductionof N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle. Advanced Materials, 29, Article ID: 1604799. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lv, J., Kong, C., Hu, X., et al. (2017) Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using a γ-Fe2O3 Catalyst. ACS Sustainable Chemistry & Engineering, 5, 10986-10995. [Google Scholar] [CrossRef]
|
|
[33]
|
Kim, S.W., Park, M., Kim, H., et al. (2017) In-situ Nano-Alloying Pd-Nifor Economical Control of Syngas Production from High-Temperature Thermo-Electrochemical Reduction of Steam/CO2. Applied Catalysis B: Environmental, 200, 265-273. [Google Scholar] [CrossRef]
|
|
[34]
|
Wu, A., Li, C., Han, B., et al. (2023) Pulsed Electrolysis of Carbon Dioxideby Large-Scale Solid Oxide Electrolytic Cells for Intermittent Renewable Energy Storage. Carbon Energy, 5, e262. [Google Scholar] [CrossRef]
|
|
[35]
|
Salvatore, D.A., Weekes, D.M., He, J., et al. (2017) Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Letters, 3, 149-154. [Google Scholar] [CrossRef]
|
|
[36]
|
Rabiee, H., Ge, L., Zhang, X., Hu, S., Li, M. and Yuan, Z. (2021) Gas Diffusion Electrodes (GDEs) for Electrochemical Reduction of Carbon Dioxide, Carbon Monoxide, and Dinitrogen to Value-Added Products: A Review. Energy & Environmental Science, 14, 1959-2008. [Google Scholar] [CrossRef]
|
|
[37]
|
Narayanan, S., Haines, B., Soler, J. and Valdez, T. (2010) Electrochemical Conversion of Carbon Dioxide to Formate in Alkaline Polymer Electrolyte Membrane Cells. Journal of the Electrochemical Society, 158, A167-A173. [Google Scholar] [CrossRef]
|
|
[38]
|
Weekes, D.M., Salvatore, D.A., Reyes, A., Huang, A. and Berlinguette, C.P. (2018) Electrolytic CO2 Reduction in a Flow Cell. Accounts of Chemical Research, 51, 910-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cui, X., Tang, C., Liu, X.M., Wang, C., Ma, W. and Zhang, Q. (2018) Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts. Chemistry–A European Journal, 24, 18494-18501. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Battino, R. and Clever, H.L. (1966) The Solubility of Gases in Liquids. Chemical Reviews, 66, 395-463. [Google Scholar] [CrossRef]
|
|
[41]
|
Zeebe, R.E. and Wolf-Gladrow, D. (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Gulf Professional Publishing, Houston.
|
|
[42]
|
Li, J., Kuang, Y., Meng, Y., et al. (2020) Electroreduction of CO2 to Formate on a Copper-Based Electrocatalyst at High Pressures with High Energy Conversion Efficiency. Journal of American Chemistry Society, 142, 7276-7282. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Köleli, F. and Kayan, D.B. (2010) Low over Potential Reduction of Dinitrogen to Ammonia in Aqueous Media. Journal of Electroanalytical Chemistry, 638, 119-122. [Google Scholar] [CrossRef]
|
|
[44]
|
Cheng, H., Cui, P., Wang, F., Ding, L.X. and Wang, H. (2019) High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium. Angewandte Chemie International Edition, 131, 15687-15693. [Google Scholar] [CrossRef]
|
|
[45]
|
Song, H., Song, J.T., Kim, B., Tan, Y.C. and Oh, J. (2020) Activation of C2H4 Reaction Pathways in Electrochemical CO2 Reduction under Low CO2 Partial Pressure. Applied Catalysis B: Environmental, 272, Article ID: 119049. [Google Scholar] [CrossRef]
|
|
[46]
|
Weng, L.C., Bell, A.T. and Weber, A.Z. (2019) Towards Membrane-Electrode Assembly Systems for CO2 Reduction: A Modeling Study. Energy & Environmental Science, 12, 1950-1968. [Google Scholar] [CrossRef]
|
|
[47]
|
Lees, E.W., Mowbray, B.A.W., Salvatore, D.A., et al. (2020) Linking Gas Diffusion Electrode Composition to CO2 Reduction in a Flow Cell. Journal of Materials Chemistry A, 8, 19493-19501. [Google Scholar] [CrossRef]
|
|
[48]
|
Chen, R., Su, H.Y., Liu, D., et al. (2020) Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. Angewandte Chemie International Edition, 132, 160-166. [Google Scholar] [CrossRef]
|
|
[49]
|
Kim, B., Hillman, F., Ariyoshi, M., Fujikawa, S. and Kenis, P.J. (2016) Effects of Composition of the Micro Porous Layer and the Substrate on Performance in the Electrochemical Reduction of CO2 to CO. Journal of Power Sources, 312, 192-198.
|
|
[50]
|
De Mot, B., Hereijgers, J., Duarte, M. and Breugelmans, T. (2019) Influence of Flow and Pressure Distribution Inside a Gas Diffusion Electrode on the Performance of a Flow—By CO2 Electrolyzer. Chemical Engineering Journal, 378, Article ID: 122224. [Google Scholar] [CrossRef]
|
|
[51]
|
Niu, Z.Z., Gao, F.Y., Zhang, X.L., et al. (2021) Hierarchical Copper within Herent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO2 Electroreduction to Multicarbon Products. Journal of the American Chemical Society, 143, 8011-8021. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lazouski, N., Chung, M., Williams, K., Gala, M.L. and Manthiram, K. (2020) Non-Aqueous Gas Diffusion Electrodes for Rapid Ammonia Synthesis from Nitrogen and Water-Splitting-Derived Hydrogen. Nature Catalysis, 3, 463-469. [Google Scholar] [CrossRef]
|
|
[53]
|
Lu, Q. and Jiao, F. (2016) Electrochemical CO2 Reduction: Electrocatalyst, Reaction Mechanism, and Process Engineering. Nano Energy, 29, 439-456. [Google Scholar] [CrossRef]
|
|
[54]
|
Xu, H., Ithisuphalap, K., Li, Y., et al. (2020) Electrochemical Ammonia Synthesis through N2 and H2O under Ambient Conditions: Theory, Practices, and Challenges for Catalysts and Electrolytes. Nano Energy, 69, Article ID: 104469. [Google Scholar] [CrossRef]
|
|
[55]
|
König, M., Vaes, J., Klemm, E. and Pant, D. (2019) Solvents and Supporting Electrolytes in the Electrocatalytic Reduction of CO2. iScience, 19, 135-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhang, Q., Liu, B., Yu, L., Bei, Y. and Tang, B. (2020) Synergistic Promotion of the Electrochemical Reduction of Nitrogen to Ammonia by Phosphorus and Potassium. ChemCatChem, 12, 334-341. [Google Scholar] [CrossRef]
|
|
[57]
|
Tomita, Y., Teruya, S., Koga, O. and Hori, Y. (2000) Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile-Water Mixtures. Journal of the Electrochemical Society, 147, 4164-4167. [Google Scholar] [CrossRef]
|
|
[58]
|
Kaneco, S., Iiba, K., Hiei, N.H., Ohta, K., Mizuno, T. and Suzuki, T. (1999) Electrochemical Reduction of Carbon Dioxide to Ethylene with High Faradaic Efficiency at a Cu Electrode in CsOH/Methanol. Electrochimica Acta, 44, 4701-4706. [Google Scholar] [CrossRef]
|
|
[59]
|
Rudnev, A.V., Fu, Y.C., Gjuroski, I., et al. (2017) Transport Matters: Boosting CO2 Electroreduction in Mixtures of [BMIm][BF4]/Water by Enhanced Diffusion. ChemPhysChem, 18, 3153-3162. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Jhong, H.R.M., Brushett, F.R. and Kenis, P.J. (2013) The Effects of Catalyst Layer Deposition Methodology on Electrode Performance. Advanced Energy Materials, 3, 589-599. [Google Scholar] [CrossRef]
|
|
[61]
|
Yin, Z., Peng, H., Wei, X., et al. (2019) An Alkaline Polymer Electrolyte CO2 Electrolyzer Operated with Pure Water. Energy & Environmental Science, 12, 2455-2462. [Google Scholar] [CrossRef]
|
|
[62]
|
Tong, W., Huang, B., Wang, P., Li, L., Shao, Q. and Huang, X. (2020) Crystal-Phase-Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis. Angewandte Chemie International Edition, 132, 2671-2675. [Google Scholar] [CrossRef]
|
|
[63]
|
Wang, M., Liu, S., Qian, T., et al. (2019) Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential. Nature Communications, 10, Article No. 341. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Díaz-Duque, Á., Sandoval-Rojas, A.P., Molina-Osorio, A.F., Feliu, J.M. and Suárez-Herrera, M.F. (2015) Electrochemical Reduction of CO2 in Water-Acetonitrile Mixtures on Nanostructured Cu Electrode. Electrochemistry Communications, 61, 74-77. [Google Scholar] [CrossRef]
|
|
[65]
|
Ren, Y., Yu, C., Han, X., et al. (2021) Methanol-Mediated Electrosynthesis of Ammonia. ACS Energy Letters, 6, 3844-3850. [Google Scholar] [CrossRef]
|
|
[66]
|
Dong, Q., Zhang, X., He, D., Lang, C. and Wang, D. (2019) Role of H2O in CO2 Electrochemical Reduction as Studied in a Water-in-Salt System. ACS Central Science, 5, 1461-1467. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Wang, M., Liu, S., Ji, H., Yang, T., Qian, T. and Yan, C. (2021) Salting-Out Effect Promoting Highly Efficient Ambient Ammonia Synthesis. Nature Communications, 12, Article No. 3198. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Banerjee, S., Zhang, Z.Q., Hall, A.S. and Thoi, V.S. (2020) Surfactant Perturbation of Cation Interactions at the Electrode-Electrolyte Interface in Carbon Dioxide Reduction. ACS Catalysis, 10, 9907-9914. [Google Scholar] [CrossRef]
|
|
[69]
|
Verma, S., Lu, S. and Kenis, P.J. (2019) Co-Electrolysis of CO2 and Glycerolas a Pathway to Carbon Chemicals with Improved Technoeconomics Due to Low Electricity Consumption. Nature Energy, 4, 466-474.
https://www.nature.com/articles/s41560-019-0374-6 [Google Scholar] [CrossRef]
|
|
[70]
|
Bai, J., Huang, H., Li, F.M., et al. (2019) Glycerol Oxidation Assisted Electrocatalytic Nitrogen Reduction: Ammonia and Glyceraldehyde Co-Production on Bimetallic RhCu Ultrathin Nanoflake Nanoaggregates. Journal of Materials Chemistry A, 7, 21149-21156. [Google Scholar] [CrossRef]
|
|
[71]
|
Zhao, L., Kuang, X., Chen, C., Sun, X., Wang, Z. and Wei, Q. (2019) Boosting Electrocatalytic Nitrogen Fixation via Energy-Efficient anodic Oxidation of Sodium Gluconate. Chemical Communications, 55, 10170-10173. [Google Scholar] [CrossRef]
|