胆囊胆固醇结石与人体微生物群相关性研究现状
Research Status of Correlation between Gallbladder Cholesterol Stones and Human Microbiota
DOI: 10.12677/ACM.2023.13112578, PDF, HTML, XML, 下载: 281  浏览: 314 
作者: 王晓韬:西安医学院研工部,陕西 西安;王智翔*, 张小弟, 宋平辉:西安医学院附属陕西省核工业二一五医院普外科,陕西 西安
关键词: 胆石症胆囊胆固醇结石人体微生物群发生机制预防Gallstone Gallbladder Cholesterol Stones Human Microbiota Pathogenesis Prevention
摘要: 胆石症(Gallstone)是普通外科一种常见病、多发病,虽然大多数胆石症患者早期无明显临床症状,但是仍然有相当一部分患者后续会出现明显的症状,甚至出现不同程度的并发症。目前无论是早期发现的无症状胆石症,还是伴随有症状出现的胆石症,主流的治疗方案均为手术治疗。近些年,随着对胆囊胆固醇结石形成机制的深入研究,人体微生物群与胆固醇结石形成之间的存在的关系逐渐成为了胆石症研究的热点。本文意在通过查阅相关文献从不同人体菌落角度论述微生物群与胆囊结石发生的相关机制。
Abstract: Gallstone is a common and frequently occurring disease in general surgery. Although most patients with gallstone have no obvious clinical symptoms at the early stage, a considerable number of pa-tients still have obvious symptoms and even complications of different degrees. At present, whether it is asymptomatic gallstone detected early or accompanied by symptoms, the mainstream treat-ment is surgical treatment. In recent years, with the in-depth study of the formation mechanism of gallbladder cholesterol stones, the relationship between human microbiota and cholesterol stone formation has gradually become a hot spot in the study of gallstone. This paper aims to discuss the mechanism of microbiota and gallstone occurrence from the perspective of different human colo-nies by referring to relevant literature.
文章引用:王晓韬, 王智翔, 张小弟, 宋平辉. 胆囊胆固醇结石与人体微生物群相关性研究现状[J]. 临床医学进展, 2023, 13(11): 18359-18365. https://doi.org/10.12677/ACM.2023.13112578

1. 前言

胆石症(Gallstone)是普通外科一种常见病、多发病,据报道 [1] ,其在我国整体发生率约10%,中年妇女甚至高达15%,在各省市发生率不尽相同,例如在上海市发病率甚至超过12% [2] ,其中70%以上的胆囊结石属胆固醇类结石。随着近年来我国经济飞速发展,丰裕的营养摄入在某种程度上促使胆囊结石的发生率进一步增加。多数胆囊结石患者并无显著症状,但是一旦第一次出现疼痛症状,后续疼痛症状将反复出现,甚至出现不同程度并发症,患者往往需要接受手术治疗 [3] 。故研究胆囊结石的成因及发病机制,有利于该疾病的预防以及减轻医疗负担。

上个世纪60年代左右,日本学者Maki [4] 在世界上首次证实大肠杆菌感染后在胆囊内表达β-葡糖醛酸酶(β-glucuronidase, β-GD),并且发现β-GD在胆色素结石的形成机制起重要作用。随后数年,国外学者陆续发现细菌感染后在胆囊内的代谢产物PLA-2、粘质、细菌生物被膜等均可引发包括但不限于促进胆固醇晶体析出转变为“胆囊胆固醇结石核”,有助于胆固醇及胆色素结石的形成 [5] [6] [7] 。

过往有关于胆囊结石与微生物群的相关性研究拘泥于细菌培养等方式,然而有研究指出约70% [8] 左右的细菌在传统细菌培养方式中并不能被发现,所以既往的研究结论存在时代局限性。然而本世纪以来,生物技术及高性能计算机技术爆炸式发展,特别是第二代基因测序技术、16S rRNA高通量测序技术、宏基因组测序技术的低成本化、数据分析自动化,为胆囊结石的细菌学发生机制的研究带来了新的曙光。本文现就胆囊胆固醇结石的细菌学发生机制作一综述。

2. 口腔微生物群

在几乎每个正常成年人口腔中可分离出约50~200种微生物,且与多种疾病相关 [9] [10] 。胆汁微生物菌群构成与口腔微生物菌群构成具有相似之处,而胆道微生物群与十二指肠微生物群的构成存在相似之处 [11] 。国内Shen [12] 等还基于全宏基因组鸟枪测序技术(WMS)对胆汁进行高通量测序,确定了13种新的胆汁细菌,然而令人意外的是其中8种是人类口腔微生物类群。因此,口腔微生物群可直接或间接的调节胆囊或者上消化道的微生物群构成,参与胆囊胆固醇结石的发生过程。

此外,来源于口腔微生物群中致病菌的免疫刺激,在一定程度上可影响胆囊收缩素的表达及分泌 [12] ,而胆囊收缩素是一种可以调节胆囊排空和充盈的主要因素,在一定程度上可参与胆固醇过饱和析出过程 [13] ,进而影响结石形成。MUC2粘蛋白是重要的促成核因子 [14] ,也是参与构成胆结石有机网状结构的主要蛋白之一。而部分研究表明微生物群可以诱导编码MCU2和FUT2的基因表达,尤其是MCU2基因,从而改变粘蛋白凝胶的积累,促使胆囊胆固醇结石的成核基质形成 [13] [15] 。

口腔微生物群落可以通过参与胆囊胆固醇结石发生的不同途径来影响其生成,不失成为胆囊胆固醇结石成因的下一个研究热点。

3. 胆道微生物群

受限于伦理学困境,目前国内外关于胆道微生物群和胆囊结石相关性的研究仍有巨大的进步空间,既往认为健康的胆道为无菌环境,然而随着基因测序技术的发展,现在人们已经逐渐认识到,即使在健康人的胆道内也存在丰富且构成复杂的微生物群落。关于胆道微生物的来源目前尚无定论,但是有学者认为胆道微生物极有可能是从十二指肠经Oddi括约肌向上逆行至胆道、或经血行进入肝脏,再随胆汁分泌定居于胆道 [16] [17] 。以前的研究已经将胆道感染与胆结石的发生联系起来,并表明细菌可能作为启动色素和胆固醇结石形成的成核因子 [18] [19] 。

4. 肠道微生物群

Wu等在2013年首次利用16S rRNA测序技术对胆囊结石患者粪便、胆汁、胆石样本进行研究,结果表明胆囊结石形成与肠道菌群紊乱相关,胆道内细菌部分源于肠道菌群移位 [20] 。此后,Ye等通过高通量测序技术对6名胆囊结石患者口腔、胆汁、胃、十二指肠内菌群研究表明,胆道菌群与十二指肠菌群相似性最高,为菌群位移进一步提供证据 [11] 。进一步研究显示,在胆囊结石患者肠道中,微生物多样性降低,同时有益菌属减少 [21] ,蛋白类型的细菌过度生长,包括广泛的致病微生物,如大肠杆菌、沙门氏菌、弧菌和螺杆菌。

4.1. 胆汁酸代谢

胆汁酸代谢途径基本如下:胆固醇首先在肝细胞内合成初级结合胆汁酸,经分泌进入肠道后进一步解偶联生成次级胆汁酸,最后再转化为游离胆汁酸。在此过程中分别有回结肠内微生物群产生的胆盐水解酶(bile salt hydrolase, BSH)和7α-脱羟酶参与。最终95%的各种胆汁酸在肠道内被重吸收回流入肝被再次利用,完成肠肝循环 [22] 。

因此,肠道微生物群所表达酶通过解偶联和脱羟基作用,生成非结合胆汁酸和次级胆汁酸,对宿主胆汁酸池进行调节并维持胆汁酸的稳态 [23] 。而胆汁酸又可通过其抑菌活性改变肠道微生物群的构成,从而影响宿主的代谢,尤其是在宿主脂质和胆固醇代谢以及肠道屏障、免疫功能等方面发挥重要作用 [24] 。

4.2. 法尼醇X受体(Farnesoid X Receptor, FXR)和G蛋白偶联胆汁酸受体1 (G Protein-Coupled Bile Acid Receptor, Gpbar1/TGR5)信号通路

法尼醇X受体,又称胆汁酸受体,属于核受体超家族的一员,是配体激活的转录因子。胆固醇7α-羟化酶(Cholesterol 7α-hydroxylase, CYP7A1)是初级胆汁酸合成的中性路径中唯一关键酶,而该酶的表达水平受多种因素影响。其一,CYP7A1表达可受其产物即胆汁酸的负反馈调节;其二,当胆汁酸池增大后可激活FXR途径抑制胆汁酸合成 [25] [26] 。在一项小鼠模型对照试验中,CONV-R小鼠肠道菌群可使末端回肠FXR及其下游的分子靶点上调,借此抑制胆汁酸合成,而给予CONV-R小鼠抗生素处理后,其牛磺胆酸和牛磺-β-鼠胆酸水平均增高,CYP7PA1表达增强 [26] 。

TGR5在人类的胆囊中表达。当其与配体结合后,可促使氯化物分泌并和碳酸氢盐交换,最终导致富含碳酸氢盐的胆汁淤积;此外激活TGR5受体会影响胆囊平滑肌细胞收缩,进一步导致胆汁淤积,为结石产生创造条件 [27] 。Vassileva [28] 等发现,成石饲料喂养的TGR5缺陷型小鼠能够防止胆固醇结石的形成。Lavoie [29] 等研究表明疏水性胆盐与TGR5结合后可迅速激活环磷腺苷酸一蛋白激酶A通路,使ATP敏感性钾通道开放,可使胆囊平滑肌膜发生超极化、收缩力下降,影响其排空功能,促进结石形成。

4.3. 胆汁酸水解酶

现已发现,人类肠道内约120个菌属的591菌株存在胆汁酸水解酶活性 [23] 。首先,胆汁酸水解酶可将结合型胆汁酸解偶联,维持胆汁酸的多样性;其次,胆汁酸水解酶活性菌表达多种氨基酸为细菌生长代谢供能、提供碳和氮元素,并可调节细菌细胞内PH值,有助于细菌抵御酸性环境时胆盐对细菌的毒性 [30] 。基于上述发现,王强 [31] 等人发现在发生肠道微生物群紊乱时可能影响胆汁酸的表达及其活性,最终导致胆汁酸合成减少,造成胆固醇过饱和并析出促成结石。Wang [31] 等研究发现胆囊结石患者的肠道游离胆汁酸明显增高,胆汁酸水解酶活性增强,但胆汁酸水解酶活性与胆汁酸活性细菌丰度无明显相关性;活性最高的BSH-T3仅存在于乳杆菌属中,而乳杆菌属的丰度与游离胆汁酸浓度呈正相关。综合上述研究结论后发现,胆汁酸水解酶可能通过影响胆汁酸合成和胆汁酸的肠肝循环某些环节间接促进胆固醇结石形成,不同类型胆汁酸水解酶活性不同,且来源菌属可能不同,故其中许多机制仍需进一步研究。

4.4. 氧化三甲胺

氧化三甲胺作为肠道微生物群的代谢产物之一,以差异化水平分布于不同人群,其主要调节因素为饮食状态。国内蒋 [32] 等检测胆固醇结石患者血清氧化三甲胺水平高于无结石对照组患者,提示氧化三甲胺可能参与胆固醇结石形成。Chen [33] 等进行了如下动物实验,使用致石喂养方式喂养易成石C57BL/6J小鼠,同时使用相同的饲料喂养抗成石AKR/J小鼠,结果发现致石饲料喂养的C57BL/6J小鼠TMAO水平显著增高;反之,在抗成石AKR/J小鼠的致石饲料中添加胆碱或TMAO后,AKR/J小鼠胆结石发生率增加70%,且伴随肝脏ABCG5/8基因以及SRBI表达上调,促进肝细胞基底侧膜摄取胆固醇、而毛细胆管膜中ABCG5/8对胆固醇转运增强,向胆汁中的分泌增加。ABCG5/8在肝细胞胆小管膜上形成异二聚体参与胆固醇转运,其表达水平与肝脏向胆汁中分泌胆固醇多少呈正相关。SRBI参与结石形原因是:血清中的高密度脂蛋白胆固醇作为胆汁胆固醇主要来源,受它唯一受体SRBI调节,所以当SRBI表达上调也可能促进胆固醇结石形成 [34] [35] [36] [37] 。

5. 幽门螺杆菌及其菌属

幽门螺杆菌是一种革兰氏阴性、螺旋形、可活动、广泛分布于胃内的微生物。许多研究表明,幽门螺杆菌和幽门螺杆菌的肠杆菌属有助于胆固醇结石的形成 [38] [39] [40] 。

Fatemi等人发现胆汁中存在幽门螺杆菌DNA与急性胆结石性胆囊炎之间存在关联。胆囊结石患者(41%)胆汁中幽门螺杆菌感染的患病率(p = 0.029)显著高于其他疾病患者 [38] 。Silva [41] 等人在对46名患有胆囊结石和18名不患有胆囊结石的拉美受试者的胆囊和胆汁组织进行的临床研究中,发现胆囊结石与胆囊组织中是否存在幽门螺杆菌DNA之间存在直接和独立的关系(p = 0.009;OR = 14.72;95% CI = 1.97至108.90)。16S rRNA基因序列与幽门螺杆菌的序列相似性 > 99%。这些结果进一步支持了幽门螺杆菌与人类胆囊结石发病机制相关的假说。

一种观点认为,幽门螺杆菌产生的尿素酶可促进钙沉淀,而钙沉淀可能会引发胆结石的形成 [42] 。进一步研究则发现,幽门螺杆菌感染影响胆囊结石形成及其并发症的病理生理学,包括胆囊炎、胆管炎、胰腺炎和胆管癌。其主要机制是释放大量促炎因子和血管活性物质,如白细胞介素-1、白细胞介素-6和肿瘤坏死因子(TNF)-α,它们参与胆囊炎症疾病和GSD的发病机制 [43] 。另一种机制可能为定居于胆囊的幽门螺杆菌在胆囊壁和胆汁中产生氧化应激和自由基反应可诱导胆石形成 [44] 。Stathopoulos [45] 等人则从胆囊运动功能探索,认为幽门螺杆菌感染可能会影响胆囊运动功能,即导致胆汁浓缩、排除能力下降,进一步介入胆囊结石生成过程。

然而,我国的一项包含7803名受试者的回顾性分析结果则显示,幽门螺旋杆菌阳性组的胆囊结石发生率较幽门螺旋杆菌阴性组低1.53倍(p = 0.012) [46] 。一项主要包含墨西哥人群的研究显示 [47] ,幽门螺旋杆菌在胆囊组织的定植与胆囊结石的发生无显著关系。

6. 小结

胆囊结石作为普通外科最常见的疾病,深入了解其发生机制有助于为人群及时开展一级预防,同时在一定程度上可预防已患结石人群的复发。本文从人体不同微生物群落的角度论述了胆囊结石的微生物学发生机制,总的来说,微生物群落作为人体“隐形的器官”,在胆囊胆固醇结石的发生、发展方面有着举足轻重的作用。然而其更深层次乃至分子层面的机制,仍需进一步探索与揭示。

NOTES

*通讯作者。

参考文献

[1] 田建国, 薛焕州, 藏义明, 张宏伟, 鲁自祥, 王继英. 门脉高压症术后并发门静脉系统血栓的诊断与治疗[J]. 肝胆胰外科杂志, 1996(3): 132-134.
[2] Hu, H., Shao, W., Liu, Q., et al. (2022) Gut Microbiota Promotes Cholesterol Gallstone Formation by Modulating Bile Acid Composition and Biliary Cholesterol Secretion. Nature Communications, 13, Article No. 252.
https://doi.org/10.1038/s41467-021-27758-8
[3] Abraham, S., Rivero, H.G., Erlikh, I.V., et al. (2014) Surgical and Nonsurgical Management of Gallstones. American Family Physician, 89, 795-802.
[4] Maki, T. (1966) Pathogen-esis of Calcium Bilirubinate Gallstone: Role of E. coli, β-Glucuronidase and Coagulation by Inorganic Ions, Polyelectro-lytes and Agitation. Annals of Surgery, 164, 90-100.
https://doi.org/10.1097/00000658-196607000-00010
[5] Sunami, Y., Tazuma, S. and Chayama, K. (2001) Is a Role of Phospholipase A2 in Cholesterol Gallstone Formation Phospholipid Species-Dependent? Biochimica et Biophys-ica Acta (BBA)—Molecular and Cell Biology of Lipids, 1532, 51-59.
https://doi.org/10.1016/S1388-1981(01)00113-5
[6] Stewart, L., Ponce, R., Oesterle, A.L., et al. (2000) Pigment Gallstone Pathogenesis: Slime Production by Biliary Bacteria Is More Important than β-Glucuronidase Production. Journal of Gastrointestinal Surgery, 4, 547-553.
https://doi.org/10.1016/S1091-255X(00)80100-6
[7] Stewart, L., Griffiss, J.M., Jarvis, G.A. and Way, L.W. (2007) Gallstones Containing Bacteria Are Biofilms: Bacterial Slime Production and Ability to Form Pigment Solids De-termines Infection Severity and Bacteremia. Journal of Gastrointestinal Surgery, 11, 977-984.
https://doi.org/10.1007/s11605-007-0168-1
[8] Tlaskalová-Hogenová, H., Stěpánková, R., Kozáková, H., et al. (2011) The Role of Gut Microbiota (Commensal Bacteria) and the Mucosal Barrier in the Pathogenesis of Inflammatory and Autoimmune Diseases and Cancer: Contribution of Germ-Free and Gnotobiotic Animal Models of Human Diseases. Cellular & Molecular Immunology, 8, 110-120.
https://doi.org/10.1038/cmi.2010.67
[9] Willis, J.R. and Gabaldón, T. (2020) The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms, 8, Article 308.
https://doi.org/10.3390/microorganisms8020308
[10] Zaura, E., Keijser, B.J., Huse, S.M. and Crielaard, W. (2009) Defining the Healthy “Core Microbiome” of Oral Microbial Communities. BMC Microbiology, 9, Article No. 259.
https://doi.org/10.1186/1471-2180-9-259
[11] Ye, F., Shen, H., Li, Z., et al. (2016) Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLOS ONE, 11, e0150519.
https://doi.org/10.1371/journal.pone.0150519
[12] Shen, H., Ye, F., Xie, L., et al. (2015) Metagenomic Sequencing of Bile from Gallstone Patients to Identify Different Microbial Community Patterns and Novel Biliary Bacteria. Scientific Reports, 5, Article No. 17450.
https://doi.org/10.1038/srep17450
[13] Fremont-Rahl, J.J., Ge, Z., Umana, C., et al. (2013) An Analysis of the Role of the Indigenous Microbiota in Cholesterol Gallstone Pathogenesis. PLOS ONE, 8, e70657.
https://doi.org/10.1371/journal.pone.0070657
[14] 魏锋. MUC2、MUC3在胆固醇结石形成中的作用[D]: [硕士学位论文]. 长春: 吉林大学, 2005.
[15] Wang, H.H., Portincasa, P., Afdhal, N.H., et al. (2010) Lith Genes and Ge-netic Analysis of Cholesterol Gallstone Formation. Gastroenterology Clinics of North America, 39, 185-207.
https://doi.org/10.1016/j.gtc.2010.02.007
[16] Neri, V., Margiotta, M., De Francesco, V., et al. (2005) DNA Se-quences and Proteic Antigens of H. pylori in Cholecystic Bile and Tissue of Patients with Gallstones. Alimentary Phar-macology & Therapeutics, 22, 715-720.
https://doi.org/10.1111/j.1365-2036.2005.02644.x
[17] Helaly, G.F., El-Ghazzawi, E.F., Kazem, A.H., et al. (2014) Detection of Helicobacter pylori Infection in Egyptian Patients with Chronic Calcular Cholecystitis. British Journal of Biomedical Science, 71, 13-18.
https://doi.org/10.1080/09674845.2014.11669957
[18] Kawai, M., Iwahashi, M., Uchiyama, K., et al. (2002) Gram-Positive Cocci Are Associated with the Formation of Completely Pure Cholesterol Stones. American Journal of Gastroenterology, 97, 83-88.
https://doi.org/10.1111/j.1572-0241.2002.05425.x
[19] Kaufman, H.S., Magnuson, T.H., Lillemoe, K.D., et al. (1989) The Role of Bacteria in Gallbladder and Common Duct Stone Formation. Annals of Surgery, 209, 584-592.
https://doi.org/10.1097/00000658-198905000-00011
[20] Wu, T., Zhang, Z., Liu, B., et al. (2013) Gut Microbiota Dysbiosis and Bacterial Community Assembly Associated with Cholesterol Gallstones in Large-Scale Study. BMC Ge-nomics, 14, Article No. 669.
https://doi.org/10.1186/1471-2164-14-669
[21] Keren, N., Konikoff, F.M., Paitan, Y., et al. (2015) Interactions between the Intestinal Microbiota and Bile Acids in Gallstones Patients. Environmental Microbiology Reports, 7, 874-880.
https://doi.org/10.1111/1758-2229.12319
[22] Cuomo, C.A. (2021) The Relaunch of Microbiology Spectrum. Microbiology Spectrum, 9, e0039621.
https://doi.org/10.1128/Spectrum.00396-21
[23] Song, Z., Cai, Y., Lao, X., et al. (2019) Taxonomic Profiling and Populational Patterns of Bacterial Bile Salt Hydrolase (BSH) Genes Based on Worldwide Human Gut Microbiome. Mi-crobiome, 7, Article No. 9.
https://doi.org/10.1186/s40168-019-0628-3
[24] Molinaro, A., Wahlström, A. and Marschall, H.U. (2018) Role of Bile Acids in Metabolic Control. Trends in Endocrinology & Metabolism, 29, 31-41.
https://doi.org/10.1016/j.tem.2017.11.002
[25] Dawson, P.A. and Karpen, S.J. (2015) Intestinal Transport and Metabolism of Bile Acids. Journal of Lipid Research, 56, 1085-1099.
https://doi.org/10.1194/jlr.R054114
[26] De Aguiar Vallim, T.Q., Tarling, E.J. and Edwards, P.A. (2013) Pleiotropic Roles of Bile Acids in Metabolism. Cell Metab-olism, 17, 657-669.
https://doi.org/10.1016/j.cmet.2013.03.013
[27] Deutschmann, K., Reich, M., Klindt, C., et al. (2018) Bile Acid Receptors in the Biliary Tree: TGR5 in Physiology and Disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 1319-1325.
https://doi.org/10.1016/j.bbadis.2017.08.021
[28] Vassileva, G., Golovko, A., Markowitz, L., et al. (2006) Target-ed Deletion of Gpbar1 Protects Mice from Cholesterol Gallstone Formation. Biochemical Journal, 398, 423-430.
https://doi.org/10.1042/BJ20060537
[29] Lavoie, B., Balemba, O.B., Godfrey, C., et al. (2010) Hydrophobic Bile Salts Inhibit Gallbladder Smooth Muscle Function via Stimulation of GPBAR1 Receptors and Activation of KATP Channels. The Journal of Physiology, 588, 3295-3305.
https://doi.org/10.1113/jphysiol.2010.192146
[30] Long, S.L., Gahan, C. and Joyce, S.A. (2017) Interactions between Gut Bacteria and Bile in Health and Disease. Molecular As-pects of Medicine, 56, 54-65.
https://doi.org/10.1016/j.mam.2017.06.002
[31] 王强, 薛东波. 肠道菌群通过影响胆汁酸代谢参与胆囊胆固醇结石形成[J]. 肝胆胰外科杂志, 2020, 32(1): 6-8, 25.
[32] 蒋兆彦, 胡海, 韩天权, 等. 肠道菌群改变与胆固醇结石病[J]. 外科理论与实践, 2019, 24(2): 93-95.
[33] Chen, Y., Weng, Z., Liu, Q., et al. (2019) FMO3 and Its Metabolite TMAO Contribute to the Formation of Gallstones. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 2576-2585.
https://doi.org/10.1016/j.bbadis.2019.06.016
[34] Fuchs, M., Ivandic, B., Müller, O., et al. (2001) Biliary Choles-terol Hypersecretion in Gallstone-Susceptible Mice Is Associated with Hepatic Up-Regulation of the High-Density Lipo-protein Receptor SRBI. Hepatology, 33, 1451-1459.
https://doi.org/10.1053/jhep.2001.24373
[35] Kuo, K.K., Shin, S.J., Chen, Z.C., et al. (2008) Significant Associa-tion of ABCG5 604Q and ABCG8 D19H Polymorphisms with Gallstone Disease. British Journal of Surgery, 95, 1005-1011.
https://doi.org/10.1002/bjs.6178
[36] Jiang, Z.Y., Parini, P., Eggertsen, G., et al. (2008) Increased Ex-pression of LXRα, ABCG5, ABCG8, and SR-BI in the Liver from Normolipidemic, Nonobese Chinese Gallstone Pa-tients. Journal of Lipid Research, 49, 464-472.
https://doi.org/10.1194/jlr.M700295-JLR200
[37] Grünhage, F., Acalovschi, M., Tirziu, S., et al. (2007) Increased Gallstone Risk in Humans Conferred by Common Variant of Hepatic ATP-Binding Cassette Transporter for Cholesterol. Hepatology, 46, 793-801.
https://doi.org/10.1002/hep.21847
[38] Fatemi, S.M., Doosti, A., Shokri, D., et al. (2018) Is There a Correlation between Helicobacter pylori and Enterohepatic Helicobacter Species and Gallstone Cholecystitis? Middle East Journal of Digestive Diseases, 10, 24-30.
https://doi.org/10.15171/mejdd.2017.86
[39] Lee, J.W., Lee, D.H., Lee, J.I., et al. (2010) Identification of Helico-bacter pylori in Gallstone, Bile, and Other Hepatobiliary Tissues of Patients with Cholecystitis. Gut Liver, 4, 60-67.
https://doi.org/10.5009/gnl.2010.4.1.60
[40] Dar, M.Y., Ali, S., Raina, A.H., et al. (2016) Association of Helico-bacter pylori with Hepatobiliary Stone Disease, a Prospective Case Control Study. Indian Journal of Gastroenterology, 35, 343-346.
https://doi.org/10.1007/s12664-016-0675-7
[41] Silva, C.P., Pereira-Lima, J.C., Oliveira, A.G., et al. (2003) Asso-ciation of the Presence of Helicobacter in Gallbladder Tissue with Cholelithiasis and Cholecystitis. Journal of Clinical Microbiology, 41, 5615-5618.
https://doi.org/10.1128/JCM.41.12.5615-5618.2003
[42] Belzer, C., Kusters, J.G., Kuipers, E.J. and van Vliet, A.H.M. (2006) Urease Induced Calcium Precipitation by Helicobacter Species May Initiate Gallstone Formation. Gut, 55, 1678-1679.
https://doi.org/10.1136/gut.2006.098319
[43] Kasprzak, A., Szmyt, M., Malkowski, W., et al. (2015) Analysis of Immunohistochemical Expression of Proinflammatory Cytokines (IL-1α, IL-6, and TNF-α) in Gallbladder Mucosa: Comparative Study in Acute and Chronic Calculous Cholecystitis. Folia Morphologica, 74, 65-72.
https://doi.org/10.5603/FM.2015.0011
[44] Sipos, P., Krisztina, H., Blazovics, A., et al. (2001) Cholecystitis, Gallstones and Free Radical Reactions in Human Gallbladder. Medical Science Monitor, 7, 84-88.
[45] Stathopoulos, P., Zundt, B., Spelsberg, F.W., et al. (2006) Relation of Gallbladder Function and Helicobacter pylori Infection to Gastric Mucosa Inflammation in Patients with Symptomatic Cholecystolithiasis. Digestion, 73, 69-74.
https://doi.org/10.1159/000092746
[46] Xu, M.Y., Ma, J.H., Yuan, B.S., et al. (2018) Association between Heli-cobacter pylori Infection and Gallbladder Diseases: A Retrospective Study. Journal of Gastroenterology and Hepatology, 33, 1207-1212.
https://doi.org/10.1111/jgh.14054
[47] Mendez-Sanchez, N., Pichardo, R., Gonzalez, J., et al. (2001) Lack of As-sociation between Helicobacter sp Colonization and Gallstone Disease. Journal of Clinical Gastroenterology, 32, 138-141.
https://doi.org/10.1097/00004836-200102000-00009