|
[1]
|
Bismuth, H. (1982) Surgical Anatomy and Anatomical Surgery of the liver. World Journal of Surgery, 6, 3-9. [Google Scholar] [CrossRef]
|
|
[2]
|
Si-Tayeb, K., Lemaigre, F.P. and Duncan, S.A. (2010) Organogenesis and Development of the Liver. Developmental Cell, 18, 175-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Fang, J., Feng, C., Chen, W., Hou, P., Liu, Z., Zuo, M., et al. (2021) Redressing the Interactions between Stem Cells and Immune System in Tissue Regeneration. Biology Direct, 16, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Michalopoulos, G.K. (2020) Liver Regeneration after Partial Hepatectomy: Critical Analysis of Mechanistic Dilemmas. The American Journal of Pathology, 176, 2-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Monaco, A.P., Hallgrimsson, J. and McDermott, W.V. (1964) Multiple Adenoma (Hamartoma) of the Liver Treated by Subtotal (90%) Resection: Morphological and Functional Stud-ies of Regeneration. Annals of Surgery, 159, 513-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Paris, J. and Henderson, N.C. (2022) Liver Zonation, Revisited. Hepatology, 76, 1219-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Locatelli, L., Cadamuro, M., Spirlì, C., Fiorotto, R., Lecchi, S., Morell, C.M., et al. (2021) Macrophage Recruitment by Fibrocystin-Defective Biliary Epithelial Cells Promotes Portal Fibrosis in Congenital Hepatic Fibrosis. Hepatology, 63, 965-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Izumi, T., Imai, J., Yamamoto, J., Kawana, Y., Endo, A., Sugawara, H., et al. (2022) Vagus-Macrophage-Hepatocyte Link Promotes Post-Injury Liver Regeneration and Whole-Body Survival through Hepatic FoxM1 Activation. Nature Communications, 9, Article No. 5300. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Meijer, C., Wiezer, M.J., Diehl, A.M., Yang, S.Q., Schouten, H.J., Meijer, S., et al. (2020) Kupffer Cell Depletion by CI2 MDP-Liposomes Alters Hepatic Cytokine Expression and Delays Liver Regeneration after Partial Hepatectomy. Liver, 20, 66-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Abshagen, K., Eipel, C., Kalff, J.C., Menger, M.D. and Vollmar, B. (2007) Loss of NF-κB Activation in Kupffer Cell-Depleted Mice Impairs Liver Regeneration after Partial Hepatectomy. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, G1570-G1577. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Duffield, J.S., Forbes, S.J., Constandinou, C.M., Clay, S., Partolina, M., Vuthoori, S., et al. (2005) Selective Depletion of Macrophages Reveals Distinct, Opposing Roles during Liver Injury and Repair. Journal of Clinical Investigation, 115, 56-65. [Google Scholar] [CrossRef]
|
|
[12]
|
Halpern, K.B., Shenhav, R., Matcovitch-Natan, O., Tóth, B., Lemze, D., Golan, M., et al. (2022) Single-Cell Spatial Reconstruc-tion Reveals Global Division of Labour in the Mammalian Liver. Nature, 542, 352-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hoehme, S., Brulport, M., Bauer, A., Bedawy, E., Schormann, W., Her-mes, M., et al. (2021) Prediction and Validation of Cell Alignment along Microvessels as Order Principle to Restore Tissue Architecture in Liver Regeneration. Proceedings of the National Academy of Sciences of the United States of America, 107, 10371-10376. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ben-Moshe, S., Shapira, Y., Moor, A.E., Manco, R., Veg, T., Bahar, Halpern, K., et al. (2022) Spatial Sorting Enables Comprehensive Characterization of Liver Zonation. Nature Metabolism, 1, 899-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rao, J., Wang, H., Ni, M., Wang, Z., Wang, Z., Wei, S., et al. (2022) FSTL1 Promotes Liver Fibrosis by Reprogramming Macrophage Function through Modulating the Intracellular Function of PKM2. Gut, 71, 2539-2550. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xu, F., Guo, M., Huang, W., Feng, L., Zhu, J., Luo, K., et al. (2020) Annexin A5 Regulates Hepatic Macrophage Polarization via Directly Targeting PKM2 and Ameliorates NASH. Redox Biology, 36, Article 101634. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wu, Y., Chen, K., Li, L., Hao, Z., Wang, T., Liu, Y., et al. (2022) Plin2-Mediated Lipid Droplet Mobilization Accelerates Exit from Pluripotency by Lipidomic Remodeling and Histone Acetylation. Cell Death & Differentiation, 29, 2316-2331. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xing, G., Liu, Z., Huang, L., Zhao, D., Wang, T., Yuan, H., et al. (2022) MAP2K6 Remodels Chromatin and Facilitates Re-programming by Activating Gatad2b-Phosphorylation Dependent Heterochromatin Loosening. Cell Death & Differentia-tion, 29, 1042-1054. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Humpton, T.J., Hall, H., Kiourtis, C., Nixon, C., Clark, W., Hedley, A., et al. (2022) p53-Mediated Redox Control Promotes Liver Regeneration and Maintains Liver Function in Response to CCl4. Cell Death & Differentiation, 29, 514-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Song, J., Ma, J., Liu, X., Huang, Z., Li, L., Li, L., et al. (2023) The MRN Complex Maintains the Biliary-Derived Hepatocytes in Liver Regeneration through ATR-Chk1 Pathway. npj Regenerative Medicine, 8, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Butera, A., Roy, M., Zampieri, C., Mammarella, E., Panatta, E., Melino, G., et al. (2022) p53-Driven Lipidome Influences Non-Cell-Autonomous Lysophospholipids in Pancreatic Can-cer. Biology Direct, 17, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
He, Z., Agostini, M., Liu, H., Melino, G. and Simon, H.U. (2023) p73 Regulates Basal and Starvation-Induced Liver Metabolism in Vivo. Oncotarget, 6, 33178-33190. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
He, Z., Liu, H., Agostini, M., Yousefi, S., Perren, A., Tschan, M.P., et al. (2023) p73 Regulates Autophagy and Hepatocellular Lipid Metabolism through a Transcriptional Activation of the ATG5 Gene. Cell Death & Differentiation, 20, 1415-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rozenberg, J.M., Zvereva, S., Dalina, A., Blatov, I., Zubarev, I., Luppov, D., et al. (2021) The p53 Family Member p73 in the Reg-ulation of Cell Stress Response. Biology Direct, 16, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Panatta, E., Zampieri, C., Melino, G. and Amelio, I. (2021) Un-derstanding p53 Tumour Suppressor Network. Biology Direct, 16, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Panatta, E., Butera, A., Celardo, I., Leist, M., Melino, G., Amelio, I. (2022) p53 Regulates Expression of Nuclear Envelope Components in Cancer Cells. Biology Direct, 17, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Priami, C., Montariello, D., De Michele, G., Ruscitto, F., Polazzi, A., Ronzoni, S., et al. (2022) Aberrant Activation of p53/p66Shc-mInsc Axis Increases Asymmetric Divisions and At-tenuates Proliferation of Aged Mammary Stem Cells. Cell Death & Differentiation, 29, 2429-2444. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yuan, J., Zhu, Q., Zhang, X., Wen, Z., Zhang, G., Li, N., et al. (2022) Ezh2 Competes with p53 to License lncRNA Neat1 Transcription for Inflammasome Activation. Cell Death & Differentiation, 29, 2009-2023. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Misir, S., Wu, N. and Yang, B.B. (2022) Specific Expression and Functions of Circular RNAs. Cell Death & Differentiation, 29, 481-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Agostini, M., Mancini, M. and Candi, E. (2022) Long Non-Coding RNAs Affecting Cell Metabolism in Cancer. Biology Direct, 17, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, Y., Luo, M., Cui, X., O’Connell, D. and Yang, Y. (2022) Long Noncoding RNA NEAT1 Promotes Ferroptosis by Modulating the miR-362-3p/MIOX Axis as a ceRNA. Cell Death & Differentiation, 29, 1850-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Guilliams, M. and Scott, C.L. (2022) Liver Macrophages in Health and Disease. Immunity, 55, 1515-1529. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Krenkel, O. and Tacke, F. (2017) Liver Macrophages in Tissue Homeostasis and Disease. Nature Reviews Immunology, 17, 306-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Vitale, I., Pietrocola, F., Guilbaud, E., Aaronson, S.A., Abrams, J.M., Adam, D., et al. (2023) Apoptotic Cell Death in Disease-Current Understanding of the NCCD 2023. Cell Death & Dif-ferentiation, 30, 1097-1154. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Andersson, E.R. (2021) In the Zone for Liver Proliferation. Science, 371, 887-888. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Aizarani, N., Saviano, A., Sagar, Mailly, L., Durand, S., Herman, J.S, et al. (2023) A Human Liver Cell Atlas Reveals Heterogeneity and Epithelial Progenitors. Nature, 572, 199-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Krenkel, O., Hundertmark, J., Ritz, T., Weiskirchen, R. and Tacke, F. (2020) Single Cell RNA Sequencing Identifies Subsets of Hepatic Stellate Cells and Myofibroblasts in Liver Fibrosis. Cells, 8, 503. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
MacParland, S.A., Liu, J.C., Ma, X.Z., Innes, B.T., Bartczak, A.M., Gage, B.K., et al. (2021) Single Cell RNA Sequencing of Human Liver Reveals Distinct Intrahepatic Macrophage Popu-lations. Nature Communications, 9, Article No. 4383. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Van der Laan, L.J., Döpp, E.A., Haworth, R., Pikkarainen, T., Kangas, M., Elomaa, O., et al. (1999) Regulation and Functional Involvement of Macrophage Scavenger Receptor MARCO in Clearance of Bacteria in Vivo. The Journal of Immunology, 162, 939-947. [Google Scholar] [CrossRef]
|
|
[40]
|
Gibbings, S.L., Goyal, R., Desch, A.N., Leach, S.M., Prabagar, M., Atif, S.M., et al. (2023) Transcriptome Analysis Highlights the Conserved Difference between Em-bryonic and Postnatal-Derived Alveolar Macrophages. Blood, 126, 1357-1366. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
El, Kasmi, K.C. and Stenmark, K.R. (2015) Contribution of Metabolic Reprogramming to Macrophage Plasticity and Function. Seminars in Immunology, 27, 267-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Andrews, T.S., Atif, J., Liu, J.C., Perciani, C.T., Ma, X., Thoeni, C., et al. (2022) Single-Cell, Single-Nucleus, and Spatial RNA Sequencing of the Human Liver Identifies Cholangiocyte and Mesenchymal Heterogeneity. Hepatology Communications, 6, 821-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Jung, J., Zeng, H. and Horng, T. (2022) Metabolism as a Guiding Force for Immunity. Nature Cell Biology, 21, 85-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Benmoussa, K., Garaude, J. and Acín-Pérez, R. (2018) How Mitochondrial Metabolism Contributes to Macrophage Phenotype and Func-tions. Journal of Molecular Biology, 430, 3906-3921. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kelly, B. and O’Neill, L.A.J. (2020) Metabolic Reprogramming in Macrophages and Dendritic Cells in Innate Immunity. Cell Research, 25, 771-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Cordes, T., Wallace, M., Michelucci, A., Divakaruni, A.S., Sapcariu, S.C., Sousa, C., et al. (2021) Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. Journal of Biological Chemistry, 291, 14274-14284. [Google Scholar] [CrossRef]
|
|
[47]
|
Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Gold-mann, O., et al. (2023) Immune-Responsive Gene 1 protein Links Metabolism to Immunity by Catalyzing Itaconic Acid Production. Proceedings of the National Academy of Sciences of the United States of America, 110, 7820-7825. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lampropoulou, V., Sergushichev, A., Bambouskova, M., Nair, S., Vincent, E.E., Loginicheva, E., et al. (2016) Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metabolism, 24, 158-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Willenborg, S., Sanin, D.E., Jais, A., Ding, X., Ulas, T., Nüchel, J., et al. (2021) Mitochondrial Metabolism Coordinates Stage-Specific Repair Processes in Macrophages during Wound Healing. Cell Metabolism, 33, 2398-2414.E9. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Cader, M.Z., Boroviak, K., Zhang, Q., Assadi, G., Kempster, S.L., Sewell, G.W., et al. (2020) C13orf31 (FAMIN) Is a Central Regulator of Immunometabolic Function. Nature Immunol-ogy, 17, 1046-1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Divakaruni, A.S., Hsieh, W.Y., Minarrieta, L., Duong, T.N., Kim, K.K.O., Desousa, B.R., et al. (2018) Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeo-stasis. Cell Metabolism, 28, 490-503.E7. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Nomura, M., Liu, J., Rovira, I.I., Gonzalez-Hurtado, E., Lee, J., Wolfgang, M.J., et al. (2022) Fatty Acid Oxidation in Macrophage Polarization. Nature Immunology, 17, 216-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Oishi, Y., Spann, N.J., Link, V.M., Muse, E.D., Strid, T., Edillor, C., et al. (2021) SREBP1 Contributes to Resolution of Pro-Inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabo-lism. Cell Metabolism, 25, 412-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Wculek, S.K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. and Sancho, D. (2022) Metabolism of Tissue Macrophages in Homeostasis and Pathology. Cellular & Molecular Immunol-ogy, 19, 384-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Li, F. and Zhang, H. (2019) Lysosomal Acid Lipase in Lipid Metabolism and Beyond. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 850-856. [Google Scholar] [CrossRef]
|
|
[56]
|
Huang, S.C.C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A.M., et al. (2021) Cell-Intrinsic Lysosomal Lipolysis Is Essential for Alternative Activation of Macrophages. Nature Immunology, 15, 846-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Arra, M., Swarnkar, G., Ke, K., Otero, J.E., Ying, J., Duan, X., et al. (2020) LDHA-Mediated ROS Generation in Chondrocytes Is a Potential Therapeutic Target for Osteoarthritis. Nature Commu-nications, 11, Article No. 3427. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Scott, C.L. and Guilliams, M. (2021) The Role of Kupffer Cells in Hepatic Iron and Lipid Metabolism. Journal of Hepatology, 69, 1197-1199. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., et al. (2022) Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvi-ronment. Cell, 159, 1312-1326. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Remmerie, A. and Scott, C.L. (2018) Macrophages and Lipid Me-tabolism. Cellular Immunology, 330, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Lehrke, M. and Lazar, M.A. (2005) The Many Faces of PPARγ. Cell, 123, 993-999. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., Morel, C.R., Subramanian, V., Mukundan, L., et al. (2021) Macrophage-Specific PPARγ Controls Alternative Activation and Im-proves Insulin Resistance. Nature, 447, 1116-1120. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Odegaard, J.I., Ricardo-Gonzalez, R.R., Red Eagle, A., Vats, D., Morel, C.R., Goforth, M.H., et al. (2020) Alternative M2 Activation of Kupffer Cells by PPARδ Ameliorates Obesity-Induced Insulin Resistance. Cell Metabolism, 7, 496-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Hamilton, J.P., Koganti, L., Muchenditsi, A., Pendyala, V.S., Huso, D., Hankin, J., et al. (2022) Activation of Liver X Receptor/Retinoid X Receptor Pathway Ameliorates Liver Disease in Atp7B−/− (Wilson Disease) Mice. Hepatology, 63, 1828-1841. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Varin, A., Thomas, C., Ishibashi, M., Ménégaut, L., Gautier, T., Trousson, A., et al. (2021) Liver X Receptor Activation Promotes Polyunsaturated Fatty Acid Synthesis in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 1357-1365. [Google Scholar] [CrossRef]
|
|
[66]
|
Bidault, G., Virtue, S., Petkevicius, K., Jolin, H.E., Dugourd, A., Guénantin, A.C., et al. (2021) SREBP1-Induced Fatty Acid Synthesis Depletes Macrophages Anti-oxidant Defences to Promote Their Alternative Activation. Nature Metabolism, 3, 1150-1162. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Sakai, M., Troutman, T.D., Seidman, J.S., Ouyang, Z., Spann, N.J., Abe, Y., et al. (2020) Liver-Derived Signals Sequentially Reprogram Myeloid Enhancers to Initiate and Maintain Kupffer Cell Identity. Immunity, 51, 655-670.E8. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Chen, Y., Yang, M., Huang, W., Chen, W., Zhao, Y., Schulte, M.L., et al. (2019) Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Re-sponses. Circulation Research, 125, 1087-1102. [Google Scholar] [CrossRef]
|
|
[69]
|
Davies, L.C., Rice, C.M., Palmieri, E.M., Taylor, P.R., Kuhns, D.B. and McVicar, D.W. (2017) Peritoneal Tissue-Resident Macrophages Are Metabolically Poised to Engage Microbes Using Tissue-Niche Fuels. Nature Communications, 8, Article No. 2074. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Svedberg, F.R., Brown, S.L., Krauss, M.Z., Campbell, L., Sharpe, C., Clausen, M., et al. (2019) The Lung Environment Controls Alveolar Macrophage Metabolism and Respon-siveness in Type 2 Inflammation. Nature Immunology, 20, 571-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Na, Y.R., Jung, D., Song, J., Park, J.W., Hong, J.J. and Seok, S.H. (2020) Pyruvate Dehydrogenase Kinase Is a Negative Regulator of Interleukin-10 Production in Macrophages. Journal of Molecular Cell Biology, 12, 543-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Graubardt, N., Vugman, M., Mouhadeb, O., Caliari, G., Pasmanik-Chor, M., Reuveni, D., et al. (2023) Ly6Chi Monocytes and Their Macrophage Descendants Regulate Neutrophil Function and Clearance in Acetaminophen-Induced Liver Injury. Frontiers in Immunology, 8, Article 626. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Yurdagul, A., Subramanian, M., Wang, X., Crown, S.B., Ilkayeva, O.R., Darville, L., et al. (2020) Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Ef-ferocytosis and Resolution of Injury. Cell Metabolism, 31, 518-533.E10. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Zhang, S., Weinberg, S., DeBerge, M., Gainullina, A., Schipma, M., Kinchen, J.M., et al. (2019) Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism, 29, 443-456.E5. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Bieghs, V., Wouters, K., van Gorp, P.J., Gijbels, M.J.J., de Winther, M.P.J., Binder, C.J., et al. (2020) Role of Scavenger Receptor A and CD36 in Diet-Induced Nonalcoholic Ste-atohepatitis in Hyperlipidemic Mice. Gastroenterology, 138, 2477-2486.E3. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Tacke, F. (2021) Targeting Hepatic Macrophages to Treat Liver Diseases. Journal of Hepatology, 66, 1300-1312. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Bellomaria, A., Barbato, G., Melino, G., Paci, M. and Melino, S. (2023) Recognition Mechanism of p63 by the E3 Ligase Itch: Novel Strategy in the Study and Inhibition of This Interac-tion. Cell Cycle, 11, 3638-3648. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Gallo, M., Paludi, D., Cicero, D.O., Chiovitti, K., Millo, E., Salis, A., et al. (2022) Identification of a Conserved N-Capping Box Important for the Structural Autonomy of the Prion Alpha 3-Helix: The Disease Associated D202N Mutation Destabilizes the Helical Conformation. International Journal of Immuno-pathology and Pharmacology, 18, 95-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Francque, S., Szabo, G., Abdelmalek, M.F., Byrne, C.D., Cusi, K., Dufour, J.F., et al. (2021) Nonalcoholic Steatohepatitis: The Role of Pe-roxisome Proliferator-Activated Receptors. Nature Reviews Gastroenterology & Hepatology, 18, 24-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Lefere, S., Puengel, T., Hundertmark, J., Penners, C., Frank, A.K., Guillot, A., et al. (2020) Differential Effects of Selective- and Pan-PPAR Agonists on Experimental Steatohepatitis and Hepatic Macrophages. Journal of Hepatology, 73, 757-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Sven, M.F., Pierre, B., Manal, F.A., Quentin, M.A., Elisabetta, B., Vlad, R., et al. (2020) A Randomised, Double-Blind, Placebo-Controlled, Multi-Centre, Dose-Range, Proof-of-Concept, 24-Week Treatment Study of Lanifibranor in Adult Subjects with Non-Alcoholic Steatohepatitis: Design of the NATIVE Study. Contemporary Clinical Trials, 98, Article 106170. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Lakhia, R., Yheskel, M., Flaten, A., Quittner-Strom, E.B., Holland, W.L. and Patel, V. (2018) PPARα Agonist Fenofibrate En-hances Fatty Acid β-Oxidation and Attenuates Polycystic Kidney and Liver Disease in Mice. American Journal of Physi-ology-Renal Physiology, 314, F122-F131. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Xiong, X., Kuang, H., Ansari, S., Liu, T., Gong, J., Wang, S., et al. (2019) Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. Molecular Cell, 75, 644-660.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Francque, S.M., Bedossa, P., Ratziu, V., Anstee, Q.M., Bugia-nesi, E., Sanyal, A.J., et al. (2021) A Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH. The New England Journal of Medicine, 385, 1547-1558. [Google Scholar] [CrossRef]
|
|
[85]
|
Morán-Salvador, E., Titos, E., Rius, B., González-Périz, A., Gar-cía-Alonso, V., López-Vicario, C., et al. (2023) Cell- Specific PPARγ Deficiency Establishes Anti-Inflammatory and Anti-Fibrogenic Properties for This Nuclear Receptor in Non-Parenchymal Liver Cells. Journal of Hepatology, 59, 1045-1053. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Hevener, A.L., Olefsky, J.M., Reichart, D., Nguyen, M.T.A., Bandyopadyhay, G., Leung, H.Y., et al. (2021) Macrophage PPARγ Is Required for Normal Skeletal Muscle and Hepatic Insulin Sensitivity and Full Antidiabetic Effects of Thiazolidinediones. Journal of Clinical Investigation, 117, 1658-1669. [Google Scholar] [CrossRef]
|
|
[87]
|
Uchimura, K. (2021) Activation of Retinoic X Receptor and Peroxisome Proliferator-Activated Receptor-γ Inhibits Nitric Oxide and Tumor Necrosis Factor-α Production in Rat Kup-ffer Cells. Hepatology, 33, 91-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Zhang, H., Chen, T., Ren, J., Xia, Y., Onuma, A., Wang, Y., et al. (2021) Pre-Operative Exercise Therapy Triggers Anti-Inflammatory Trained Immunity of Kupffer Cells through Meta-bolic Reprogramming. Nature Metabolism, 3, 843-858. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Narkar, V.A., Downes, M., Yu, R.T., Embler, E., Wang, Y.X., Banayo, E., et al. (2023) AMPK and PPARδ Agonists Are Ex-ercise Mimetics. Cell, 134, 405-415. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Endo-Umeda, K., Nakashima, H., Komine-Aizawa, S., Umeda, N., Seki, S. and Makishima, M. (2018) Liver X Receptors Regulate Hepatic F4/80+CD11b+ Kupffer Cells/Macrophages and Innate Immune Responses in Mice. Scientific Reports, 8, Article No. 9281. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Venteclef, N., Jakobsson, T., Ehrlund, A., Damdimopou-los, A., Mikkonen, L., Ellis, E., et al. (2010) GPS2-Dependent Corepressor/SUMO Pathways Govern An-ti-Inflammatory Actions of LRH-1 and LXRβ in the Hepatic Acute Phase Response. Genes & Development, 24, 381-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Ghisletti, S., Huang, W., Ogawa, S., Pascual, G., Lin, M.E., Willson, T.M., et al. (2022) Parallel SUMOylation-Dependent Pathways Mediate Gene- and Signal-Specific Transrepression by LXRs and PPARγ. Molecular Cell, 25, 57-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Joseph, S.B., Castrillo, A., Laffitte, B.A., Mangelsdorf, D.J. and Tontonoz, P. (2023) Reciprocal Regulation of Inflammation and Lipid Metabolism by Liver X Receptors. Nature Medi-cine, 9, 213-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Ito, A., Hong, C., Rong, X., Zhu, X., Tarling, E.J., Hedde, P.N., et al. (2015) LXRs Link Metabolism to Inflammation through Abca1-Dependent Regulation of Membrane Compo-sition and TLR Signaling. eLife, 4, e08009. [Google Scholar] [CrossRef]
|
|
[95]
|
Thomas, D.G., Doran, A.C., Fotakis, P., Westerterp, M., Antonson, P., Jiang, H., et al. (2021) LXR Suppresses Inflammatory Gene Expression and Neutrophil Migration through cis-Repression and Cholesterol Efflux. Cell Reports, 25, 3774-3785.E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Li, P., Spann, N.J., Kaikkonen, M.U., Lu, M., Oh, D.Y., Fox, J.N., et al. (2023) NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing Omega 3 Fatty Acids. Cell, 155, 200-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Körner, A., Zhou, E., Müller, C., Mohammed, Y., Herceg, S., Bracher, F., et al. (2019) Inhibition of Δ24-Dehydroch- olesterol Reductase Activates Pro-Resolving Lipid Mediator Bi-osynthesis and Inflammation Resolution. Proceedings of the National Academy of Sciences of the United States of Amer-ica, 116, 20623-20634. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Fessler, M.B. (2020) The Challenges and Promise of Targeting the Liver X Receptors for Treatment of Inflammatory Disease. Pharmacology & Therapeutics, 181, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Sag, D., Carling, D., Stout, R.D. and Suttles, J. (2020) Adenosine 5’-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype. The Journal of Immunology, 181, 8633-8641. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Day, E.A., Ford, R.J. and Steinberg, G.R. (2017) AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends in Endocrinology & Metabolism, 28, 545-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Lee, H.S., Shin, H.S., Choi, J., Bae, S.J., Wee, H.J., Son, T., et al. (2019) AMP-Activated Protein Kinase Activator, HL156A Reduces Thioacetamide-Induced Liver Fibrosis in Mice and Inhibits the Activation of Cultured Hepatic Stellate Cells and Macrophages. International Journal of Oncology, 49, 1407-1414. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Lodder, J., Denaës, T., Chobert, M.N., Wan, J., El-Benna, J., Pawlotsky, J.M., et al. (2022) Macrophage Autophagy Protects against Liver Fibrosis in Mice. Autophagy, 11, 1280-1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Kim, S.H., Kim, G., Han, D.H., Lee, M., Kim, I., Kim, B., et al. (2023) Ezetimibe Ameliorates Steatohepatitis via AMP Activated Protein Kinase-TFEB-Mediated Activa-tion of Autophagy and NLRP3 Inflammasome Inhibition. Autophagy, 13, 1767-1781. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Gao, M., Zhao, W., Li, C., Xie, X., Li, M., Bi, Y., et al. (2020) Spermidine Ameliorates Non-Alcoholic Fatty Liver Disease through Regulating Lipid Metabolism via AMPK. Biochemical and Biophysical Research Communications, 505, 93-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Liu, P., de la Vega, M.R., Dodson, M., Yue, F., Shi, B., Fang, D., et al. (2019) Spermidine Confers Liver Protection by Enhancing NRF2 Signaling through a MAP1S-Mediated Non-canonical Mechanism. Hepatology, 70, 372-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Liu, H., Dong, J., Song, S., Zhao, Y., Wang, J., Fu, Z., et al. (2019) Sper-midine Ameliorates Liver Ischaemia-Reperfusion Injury through the Regulation of Autophagy by the AMPK-mTOR-ULK1 Signalling Pathway. Biochemical and Biophysical Research Communications, 519, 227-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Liu, R., Li, X., Ma, H., Yang, Q., Shang, Q., Song, L., et al. (2020) Spermidine Endows Macrophages Anti-Inflammatory Properties by Inducing Mitochondrial Superoxide-Dependent AMPK Activation, HIF-1α Upregulation and Autophagy. Free Radical Biology and Medicine, 161, 339-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Hardie, D.G., Ross, F.A. and Hawley, S.A. (2022) AMPK: A Nutrient and Energy Sensor That Maintains Energy Homeostasis. Nature Reviews Molecular Cell Biology, 13, 251-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Thomas, J.A., Pope, C., Wojtacha, D., Robson, A.J., Gor-don-Walker, T.T., Hartland, S., et al. (2021) Macrophage Therapy for Murine Liver Fibrosis Recruits Host Effector Cells Improving Fibrosis, Regeneration, and Function. Hepatology, 53, 2003-2015. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Moroni, F., Dwyer, B.J., Graham, C., Pass, C., Bailey, L., Ritchie, L., et al. (2019) Safety Profile of Autologous Macrophage Therapy for Liver Cirrhosis. Nature Medicine, 25, 1560-1565. [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Ma, P.F., Gao, C.C., Yi, J., Zhao, J.L., Liang, S.Q., Zhao, Y., et al. (2021) Cytotherapy with M1-Polarized Macrophages Ameliorates Liver Fibrosis by Modulating Immune Microenvi-ronment in Mice. Journal of Hepatology, 67, 770-779. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Starkey Lewis, P., Campana, L., Aleksieva, N., Cartwright, J.A., Mackinnon, A., O’Duibhir, E., et al. (2020) Alternatively Acti-vated Macrophages Promote Resolution of Necrosis Following Acute Liver Injury. Journal of Hepatology, 73, 349-1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Li, Q., Wang, Y., Sun, Q., Knopf, J., Herrmann, M., Lin, L., et al. (2022) Immune Response in COVID-19: What Is Next? Cell Death & Differentiation, 29, 1107-1122. [Google Scholar] [CrossRef] [PubMed]
|