[1]
|
Rothstein, D.M. (2016) Rifamycins, Alone and in Combination. Cold Spring Harbor Perspectives in Medicine, 6, a027011. https://doi.org/10.1101/cshperspect.a027011
|
[2]
|
Ojetti, V., Lauritano, E.C., Barbaro, F., Migneco, A., Ainora, M.E., Fontana, L., Gabrielli, M. and Gasbarrini, A. (2009) Rifaximin Pharmacology and Clinical Implications. Expert Opinion on Drug Metabolism & Toxicology, 5, 675-682.
https://doi.org/10.1517/17425250902973695
|
[3]
|
Koo, H.L. and DuPont, H.L. (2010) Rifaximin: A Unique Gas-trointestinal-Selective Antibiotic for Enteric Diseases. Current Opinion in Gastroenterology, 26, 17-25. https://doi.org/10.1097/MOG.0b013e328333dc8d
|
[4]
|
Caraceni, P., Vargas, V., Solà, E., Alessandria, C., de Wit, K., Trebicka, J., Angeli, P., Mookerjee, R.P., Durand, F., Pose, E., Krag, A., Bajaj, J.S., Beuers, U., Ginès, P. and Liverhope Consortium (2021) The Use of Rifaximin in Patients with Cirrhosis. Hepatology, 74, 1660-1673. https://doi.org/10.1002/hep.31708
|
[5]
|
Kogawa, A.C. and Salgado, H.R.N. (2018) Status of Rifaximin: A Review of Characteristics, Uses and Analytical Methods. Critical Reviews in Analytical Chemistry, 48, 459-466. https://doi.org/10.1080/10408347.2018.1447355
|
[6]
|
Barkin, J.A., Keihanian, T., Barkin, J.S., Antequera, C.M. and Moshiree, B. (2019) Preferential Usage of Rifaximin for the Treatment of Hydrogen-Positive Small Intestinal Bacte-rial Overgrowth. Revista de Gastroenterología del Perú, 39, 111-115. https://doi.org/10.14309/00000434-201610001-01074
|
[7]
|
Li, H., Xiang, Y., Zhu, Z., Wang, W., Jiang, Z., Zhao, M., Cheng, S., Pan, F., Liu, D., Ho, R.C.M. and Ho, C.S.H. (2021) Rifaximin-Mediated Gut Microbiota Regulation Modulates the Function of Microglia and Protects against CUMS-Induced Depression-Like Behaviors in Adolescent Rat. Journal of Neuroinflammation, 18, Article No. 254.
https://doi.org/10.1186/s12974-021-02303-y
|
[8]
|
Meng, D., Yang, M., Hu, L., Liu, T., Zhang, H., Sun, X., Wang, X., Chen, Y., Jin, Y. and Liu, R. (2022) Rifaximin Protects against Circadian Rhythm Disruption-Induced Cognitive Im-pairment through Preventing Gut Barrier Damage and Neuroinflammation. Journal of Neurochemistry, 163, 406-418. https://doi.org/10.1111/jnc.15701
|
[9]
|
Dutta, D., Li, K., Methe, B. and Lim, S.H. (2020) Rifaximin on Intestinal-ly-Related Pathologic Changes in Sickle Cell Disease. American Journal of Hematology, 95, E83-E86. https://doi.org/10.1002/ajh.25722
|
[10]
|
Poo, S., Sriranganathan, D. and Segal, J.P. (2022) Network Meta-Analysis: Efficacy of Treatment for Acute, Chronic, and Prevention of Pouchitis in Ulcerative Colitis. European Journal of Gas-troenterology & Hepatology, 34, 518-528.
https://doi.org/10.1097/MEG.0000000000002362
|
[11]
|
Chinese Society of Infectious Diseases and Chinese Medi-cal Association (2022) Expert Consensus on Diagnosis and Treatment of End-Stage Liver Disease Complicated Infection (2021 Version). Chinese Journal of Hepatology, 30, 147-158.
|
[12]
|
Paik, J.M., Golabi, P., Younossi, Y., Mishra, A. and Younossi, Z.M. (2020) Changes in the Global Burden of Chronic Liver Diseases from 2012 to 2017: The Growing Impact of NAFLD. Hepatology, 72, 1605-1616.
https://doi.org/10.1002/hep.31173
|
[13]
|
Parola, M. and Pinzani, M. (2019) Liver Fibrosis: Pathophysiology, Patho-genetic Targets and Clinical Issues. Molecular Aspects of Medicine, 65, 37-55. https://doi.org/10.1016/j.mam.2018.09.002
|
[14]
|
European Association for the Study of the Liver and European Association for the Study of the Liver (2019) EASL Clinical Practice Guidelines on Nutrition in Chronic Liver Disease. Journal of Hepatology, 70, 172-193.
|
[15]
|
Carrion, A.F. and Martin, P. (2021) Keeping Patients with End-Stage Liver Disease Alive While Awaiting Transplant: Management of Complications of Portal Hypertension. Clinical Liver Disease, 25, 103-120.
https://doi.org/10.1016/j.cld.2020.08.007
|
[16]
|
Haep, N., Florentino, R.M., Squires, J.E., Bell, A. and So-to-Gutierrez, A. (2021) The Inside-Out of End-Stage Liver Disease: Hepatocytes Are the Keystone. Seminars in Liver Disease, 41, 213-224.
https://doi.org/10.1055/s-0041-1725023
|
[17]
|
Shi, M., Meng, F.P. and Wang, F.S. (2021) Progress in Basic and Clinical and Clinical Research of a Cell Therapy for End-Stage Liver Disease. Chinese Journal of Hepatology, 29, 179-182.
|
[18]
|
Zeng, X., Sheng, X., Wang, P.Q., Xin, H.G., Guo, Y.B., Lin, Y., et al. (2021) Low-Dose Rifaximin Prevents Complications and Improves Survival in Patients with Decompensated Liver Cirrhosis. Hepatology Internation-al, 15, 155-165.
https://doi.org/10.1007/s12072-020-10117-y
|
[19]
|
Tilg, H., Adolph, T.E. and Trauner, M. (2022) Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metabolism, 34, 1700-1718. https://doi.org/10.1016/j.cmet.2022.09.017
|
[20]
|
Trebicka, J., Macnaughtan, J., Schnabl, B., Shawcross, D.L. and Bajaj, J.S. (2021) The Microbiota in Cirrhosis and Its Role in Hepatic Decompensation. Journal of Hepatology, 75, S67-S81. https://doi.org/10.1016/j.jhep.2020.11.013
|
[21]
|
Kang, Y., Kuang, X., Yan, H., Ren, P., Yang, X., Liu, H., Liu, Q., Yang, H., et al. (2023) A Novel Synbiotic Alleviates Autoimmune Hepatitis by Modulating the Gut Microbio-ta-Liver Axis and Inhibiting the Hepatic TLR4/NF-κB/NLRP3 Signaling Pathway. mSystems, 8, e0112722. https://doi.org/10.1128/msystems.01127-22
|
[22]
|
Maslennikov, R., Pavlov, C. and Ivashkin, V. (2018) Small Intes-tinal Bacterial Overgrowth in Cirrhosis: Systematic Review and Meta-Analysis. Hepatology International, 12, 567-576. https://doi.org/10.1007/s12072-018-9898-2
|
[23]
|
Patel, V.C., Lee, S., McPhail, M.J.W., Da Silva, K., Guilly, S., Zamalloa, A., et al. (2022) Rifaximin-α Reduces Gut-Derived Inflammation and Mucin Degradation in Cirrhosis and En-cephalopathy: RIFSYS Randomised Controlled Trial. Journal of Hepatology, 76, 332-342. https://doi.org/10.1016/j.jhep.2021.09.010
|
[24]
|
Kaji, K., Takaya, H., Saikawa, S., Furukawa, M., Sato, S., Kawa-ratani, H., et al. (2017) Rifaximin Ameliorates Hepatic Encephalopathy and Endotoxemia without Affecting the Gut Mi-crobiome Diversity. World Journal of Gastroenterology, 23, 8355-8366. https://doi.org/10.3748/wjg.v23.i47.8355
|
[25]
|
Brown, E.L., Xue, Q., Jiang, Z.D., Xu, Y. and Dupont, H.L. (2010) Pretreatment of Epithelial Cells with Rifaximin Alters Bacterial Attachment and Internalization Profiles. Antimicrobial Agents and Chemotherapy, 54, 388-396.
https://doi.org/10.1128/AAC.00691-09
|
[26]
|
Mencarelli, A., Renga, B., Palladino, G., Claudio, D., Ricci, P., Dis-trutti, E., et al. (2011) Inhibition of NF-κB by a PXR-Dependent Pathway Mediates Counter-Regulatory Activities of Rifaximin on Innate Immunity in Intestinal Epithelial Cells. European Journal of Pharmacology, 668, 317-324. https://doi.org/10.1016/j.ejphar.2011.06.058
|
[27]
|
de Wit, K., Beuers, U., Mukha, A., Stigter, E.C.A., Gulersonmez, M.C., Ramos Pittol, J.M., et al. (2023) Rifaximin Stimulates Nitrogen Detoxification by PXR-Independent Mechanisms in Human Small Intestinal Organoids. Liver International, 43, 649-659. https://doi.org/10.1111/liv.15491
|
[28]
|
Wang, F.D., Zhou, J. and Chen, E.Q. (2022) Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Frontiers in Pharmacology, 13, Article ID: 787748. https://doi.org/10.3389/fphar.2022.787748
|
[29]
|
Israelsen, M., Madsen, B.S., Torp, N., Johansen, S., Hansen, C.D., Detlefsen, S., et al. (2023) Rifaximin-α for Liver Fibrosis in Patients with Alcohol-Related Liver Disease (GALA-RIF): A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. The Lancet Gastroenterology and Hepatology, 8, 523-532.
https://doi.org/10.1016/S2468-1253(23)00010-9
|
[30]
|
Enomoto, M., Kaji, K., Nishimura, N., Fujimoto, Y., Murata, K., Takeda, S., Tsuji, Y., et al. (2022) Rifaximin and Lubiprostone Mitigate Liver Fibrosis Development by Repairing Gut Barrier Function in Diet-Induced Rat Steatohepatitis. Digestive and Liver Disease, 54, 1392-1402. https://doi.org/10.1016/j.dld.2022.04.012
|
[31]
|
Fujinaga, Y., Kawaratani, H., Kaya, D., Tsuji, Y., Ozutsumi, T., Furukawa, M., et al. (2020) Effective Combination Therapy of Angiotensin-II Receptor Blocker and Rifaximin for He-patic Fibrosis in Rat Model of Nonalcoholic Steatohepatitis. International Journal of Molecular Sciences, 21, Article No. 5589. https://doi.org/10.3390/ijms21155589
|
[32]
|
Jothimani, D., Rela, M. and Kamath, P.S. (2023) Liver Cirrhosis and Portal Hypertension: How to Deal with Esophageal Varices? Medical Clinics of North America, 107, 491-504. https://doi.org/10.1016/j.mcna.2023.01.002
|
[33]
|
Ferral, H., Fimmel, C.J., Sonnenberg, A., Alonzo, M.J. and Aquisto, T.M. (2021) Transjugular Liver Biopsy with Hemodynamic Evaluation: Correlation between Hepatic Venous Pressure Gradient and Histologic Diagnosis of Cirrhosis. Journal of Clinical Imaging Science, 11, Article No. 25. https://doi.org/10.25259/JCIS_233_2020
|
[34]
|
Iwakiri, Y. and Trebicka, J. (2021) Portal Hypertension in Cirrhosis: Pathophysiological Mechanisms and Therapy. JHEP Reports, 3, Article ID: 100316. https://doi.org/10.1016/j.jhepr.2021.100316
|
[35]
|
Rayes, N., Pilarski, T., Stockmann, M., Bengmark, S., Neuhaus, P. and Seehofer, D. (2012) Effect of Pre- and Probiotics on Liver Regeneration after Resection: A Randomised, Dou-ble-Blind Pilot Study. Beneficial Microbes, 3, 237-244.
https://doi.org/10.3920/BM2012.0006
|
[36]
|
Arab, J.P., Martin-Mateos, R.M. and Shah, V.H. (2018) Gut-Liver Axis, Cirrhosis and Portal Hypertension: The Chicken and the Egg. Hepatology International, 12, 24-33. https://doi.org/10.1007/s12072-017-9798-x
|
[37]
|
Kalambokis, G.N. and Tsianos, E.V. (2012) Rifaximin Reduces Endotoxemia and Improves Liver Function and Disease Severity in Patients with Decompensated Cirrhosis. Hepatology, 55, 655-656. https://doi.org/10.1002/hep.24751
|
[38]
|
Vlachogiannakos, J., Saveriadis, A.S., Viazis, N., The-odoropoulos, I., Foudoulis, K., Manolakopoulos, S., Raptis, S. and Karamanolis, D.G. (2009) Intestinal Decontamination Improves Liver Haemodynamics in Patients with Alcohol-Related Decompensated Cirrhosis. Alimentary Pharmacology & Therapeutics, 29, 992-999.
https://doi.org/10.1111/j.1365-2036.2009.03958.x
|
[39]
|
Salehi, S., Tranah, T.H., Lim, S., Heaton, N., Heneghan, M., Aluvihare, V., Patel, V.C. and Shawcross, D.L. (2019) Rifaximin Reduces the Incidence of Spontaneous Bacterial Peritonitis, Variceal Bleeding and All-Cause Admissions in Patients on the Liver Transplant Waiting List. Alimentary Pharmacology & Therapeutics, 50, 435-441.
https://doi.org/10.1111/apt.15326
|
[40]
|
Lim, Y.L., Kim, M.Y., Jang, Y.O., Baik, S.K. and Kwon, S.O. (2017) Rifaximin and Propranolol Combination Therapy Is More Effective than Propranolol Monotherapy for the Reduction of Portal Pressure: An Open Randomized Controlled Pilot Study. Gut and Liver, 11, 702-710. https://doi.org/10.5009/gnl16478
|
[41]
|
Patidar, K.R. and Bajaj, J.S. (2015) Covert and Overt Hepatic Encephalopa-thy: Diagnosis and Management. Clinical Gastroenterology and Hepatology, 13, 2048-2061. https://doi.org/10.1016/j.cgh.2015.06.039
|
[42]
|
Ridola, L., Faccioli, J., Nardelli, S., Gioia, S. and Riggio, O. (2020) Hepatic Encephalopathy: Diagnosis and Management. Journal of Translational Internal Medicine, 8, 210-219. https://doi.org/10.2478/jtim-2020-0034
|
[43]
|
Coronel-Castillo, C.E., Contreras-Carmona, J., Frati-Munari, A.C., Uribe, M. and Méndez-Sánchez, N. (2020) Efficacy of Rifaximin in the Different Clinical Scenarios of Hepatic Encepha-lopathy. Revista de Gastroenterología de México, 85, 56-68. https://doi.org/10.1016/j.rgmxen.2019.09.003
|
[44]
|
Tamai, Y., Iwasa, M., Eguchi, A., Shigefuku, R., Kamada, Y., Miyoshi, E. and Takei, Y. (2021) Rifaximin Ameliorates Intestinal Inflammation in Cirrhotic Patients with Hepatic En-cephalopathy. JGH Open, 5, 827-830.
https://doi.org/10.1002/jgh3.12596
|
[45]
|
Zhang, Z., Yuan, Q., Hu, X., Liao, J. and Kuang, J. (2022) Rifaximin Pro-tects SH-SY5Y Neuronal Cells from Iron Overload-Induced Cytotoxicity via Inhibiting STAT3/NF-κB Signaling. Cell Biology International, 46, 1062-1073.
https://doi.org/10.1002/cbin.11776
|
[46]
|
Liang, A., Brar, S., Almaghrabi, M., Khan, M.Q., Qumosani, K. and Teriaky, A. (2023) Primary Prevention of Hepatic Encephalopathy Post-TIPS: A Systematic Review and Meta-Analysis. Medicine (Baltimore), 102, e35266.
https://doi.org/10.1097/MD.0000000000035266
|
[47]
|
LBureau, C., Thabut, D., Jezequel, C., Archambeaud, I., D’Alteroche, L., Dharancy, S., et al. (2021) The Use of Rifaximin in the Prevention of Overt Hepatic Encephalopathy af-ter Transjugular Intrahepatic Portosystemic Shunt: A Randomized Controlled Trial. Annals of Internal Medicine, 174, 633-640. https://doi.org/10.7326/M20-0202
|
[48]
|
Yu, X., Jin, Y., Zhou, W., Xiao, T., Wu, Z., Su, J., et al. (2022) Rifaximin Modulates the Gut Microbiota to Prevent Hepatic Encephalopathy in Liver Cirrhosis without Impacting the Resistome. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 761192. https://doi.org/10.3389/fcimb.2021.761192
|
[49]
|
Fu, J., Gao, Y. and Shi, L. (2022) Combination Therapy with Rifaximin and Lactulose in Hepatic Encephalopathy: A Systematic Review and Meta-Analysis. PLOS ONE, 17, e0267647. https://doi.org/10.1371/journal.pone.0267647
|
[50]
|
Aithal, G.P., Palaniyappan, N., China, L., Härmälä, S., Macken, L., Ryan, J.M., et al. (2021) Guidelines on the Management of Ascites in Cirrhosis. Gut, 70, 9-29. https://doi.org/10.1136/gutjnl-2020-321790
|
[51]
|
Zaccherini, G., Tufoni, M., Iannone, G. and Caraceni, P. (2021) Management of Ascites in Patients with Cirrhosis: An Update. Journal of Clinical Medicine, 10, Article No. 5226. https://doi.org/10.3390/jcm10225226
|
[52]
|
Pedersen, J.S., Bendtsen, F. and Møller, S. (2015) Management of Cir-rhotic Ascites. Therapeutic Advances in Chronic Disease, 6, 124-137. https://doi.org/10.1177/2040622315580069
|
[53]
|
Lv, X.Y., Ding, H.G., Zheng, J.F., Fan, C.L. and Li, L. (2020) Rifaximin Improves Survival in Cirrhotic Patients with Refractory Ascites: A Real-World Study. World Journal of Gas-troenterology, 26, 199-218.
https://doi.org/10.3748/wjg.v26.i2.199
|
[54]
|
Hanafy, A.S. and Hassaneen, A.M. (2016) Rifaximin and Midodrine Improve Clinical Outcome in Refractory Ascites Including Renal Function, Weight Loss, and Short-Term Survival. Eu-ropean Journal of Gastroenterology & Hepatology, 28, 1455-1461. https://doi.org/10.1097/MEG.0000000000000743
|
[55]
|
Yokoyama, K., Fukuda, H., Yamauchi, R., Higashi, M., Miyayama, T., Higashi, T., et al. (2022) Long-Term Effects of Rifaximin on Patients with Hepatic Encephalopathy: Its Possible Effects on the Improvement in the Blood Ammonia Concentration Levels, Hepatic Spare Ability and Refractory Ascites. Medicina (Kaunas), 58, Article No. 1276.
https://doi.org/10.3390/medicina58091276
|
[56]
|
Dong, T., Aronsohn, A., Gautham, R.K. and Te, H.S. (2016) Rifaximin Decreases the Incidence and Severity of Acute Kidney Injury and Hepatorenal Syndrome in Cirrhosis. Diges-tive Diseases and Sciences, 61, 3621-3626.
https://doi.org/10.1007/s10620-016-4313-0
|
[57]
|
Mostafa, T., Badra, G. and Abdallah, M. (2015) The Efficacy and the Immunomodulatory Effect of Rifaximin in Prophylaxis of Spontaneous Bacterial Peritonitis in Cirrhotic Egyptian Pa-tients. Turkish Journal of Gastroenterology, 26, 163-169. https://doi.org/10.5152/tjg.2015.7782
|
[58]
|
Ponziani, F.R., Gerardi, V., Pecere, S., D’Aversa, F., Lopetuso, L., et al. (2015) Effect of Rifaximin on Gut Microbiota Composi-tion in Advanced Liver Disease and Its Complications. World Journal of Gastroenterology, 21, 12322-12333.
https://doi.org/10.3748/wjg.v21.i43.12322
|
[59]
|
Praharaj, D.L., Premkumar, M., Roy, A., Verma, N., Taneja, S., Duseja, A. and Dhiman, R.K. (2022) Rifaximin vs. Norfloxacin for Spontaneous Bacterial Peritonitis Prophylaxis: A Randomized Controlled Trial. Journal of Clinical and Experimental Hepatology, 12, 336-342. https://doi.org/10.1016/j.jceh.2021.08.010
|
[60]
|
Hasan, I., Rashid, T., Chirila, R.M., Ghali, P. and Wadei, H.M. (2021) Hepatorenal Syndrome: Pathophysiology and Evidence-Based Management Update. Romanian Journal of Inter-nal Medicine, 59, 227-261.
https://doi.org/10.2478/rjim-2021-0006
|
[61]
|
Francoz, C., Durand, F., Kahn, J.A., Genyk, Y.S. and Nadim, M.K. (2019) Hepatorenal Syndrome. Clinical Journal of the American Society of Nephrology, 14, 774-781. https://doi.org/10.2215/CJN.12451018
|
[62]
|
Schrier, R.W., Arroyo, V., Bernardi, M., Epstein, M., Henriksen, J.H. and Rodés, J. (1988) Peripheral Arterial Vasodilation Hypothesis: A Proposal for the Initiation of Renal Sodium and Water Retention in Cirrhosis. Hepatology, 8, 1151-1157. https://doi.org/10.1002/hep.1840080532
|
[63]
|
Wilde, B., Canbay, A. and Katsounas, A. (2023) Clinical and Pathophysiological Understanding of the Hepatorenal Syndrome: Still Wrong or Still Not Exactly Right? World Journal of Clinical Cases, 11, 1261-1266.
https://doi.org/10.12998/wjcc.v11.i6.1261
|
[64]
|
Wang, M., Qin, T., Zhang, Y., Zhang, T., Zhuang, Z., Wang, Y., Ding, Y. and Peng, Y. (2022) Toll-Like Receptor 4 Signaling Pathway Mediates Both Liver and Kidney Injuries in Mice with Hepatorenal Syndrome. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 323, G461-G476.
https://doi.org/10.1152/ajpgi.00048.2022
|
[65]
|
Luo, M., Xie, P., Deng, X., Fan, J. and Xiong, L. (2023) Rifaximin Ameliorates Loperamide-Induced Constipation in Rats through the Regulation of Gut Microbiota and Serum Metabolites. Nutrients, 15, Article No. 4502.
https://doi.org/10.3390/nu15214502
|
[66]
|
Hari, A. (2021) Muscular Abnormalities in Liver Cirrhosis. World Jour-nal of Gastroenterology, 27, 4862-4878.
https://doi.org/10.3748/wjg.v27.i29.4862
|
[67]
|
Tantai, X., Liu, Y., Yeo, Y.H., Praktiknjo, M., Mauro, E., Hama-guchi, Y., et al. (2022) Effect of Sarcopenia on Survival in Patients with Cirrhosis: A Meta-Analysis. Journal of Hepa-tology, 76, 588-599.
https://doi.org/10.1016/j.jhep.2021.11.006
|
[68]
|
Sato, S., Namisaki, T., Murata, K., Fujimoto, Y., Takeda, S., Enomoto, M., et al. (2021) The Association between Sarcopenia and Endotoxin in Patients with Alcoholic Cirrhosis. Medicine (Baltimore), 100, e27212.
https://doi.org/10.1097/MD.0000000000027212
|
[69]
|
Jindal, A. and Jagdish, R.K. (2019) Sarcopenia: Ammonia Metabolism and Hepatic Encephalopathy. Clinical and Molecular Hepatology, 25, 270-279. https://doi.org/10.3350/cmh.2019.0015
|
[70]
|
Qiu, J., Thapaliya, S., Runkana, A., Yang, Y., Tsien, C., Mohan, M.L., et al. (2013) Hyperammonemia in Cirrhosis Induces Transcriptional Regulation of Myostatin by an NF-κB-Mediated Mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110, 18162-18167. https://doi.org/10.1073/pnas.1317049110
|
[71]
|
Yao, J., Chang, L., Yuan, L. and Duan, Z. (2016) Nutrition Status and Small Intestinal Bacterial Overgrowth in Patients with Virus-Related Cirrhosis. Asia Pacific Journal of Clinical Nu-trition, 25, 283-291.
|
[72]
|
Maslennikov, R., Alieva, A., Poluektova, E., Zharikov, Y., Suslov, A., Letyagina, Y., et al. (2023) Sarcopenia in Cirrhosis: Prospects for Therapy Targeted to Gut Microbiota. World Journal of Gastroenterology, 29, 4236-4251.
https://doi.org/10.3748/wjg.v29.i27.4236
|