|
[1]
|
Z. Yong, V. Mata. Adsorption of carbon dioxide at high tem- perature: A review. Separation and Purification Technology, 2002, 26: 195-205.
|
|
[2]
|
R. Humayun, D. Tomasko. High-resolution adsorption isotherms of supercritical carbon dioxide on activated carbon. AIChE Jour- nal, 2000, 46(10): 2065-2075.
|
|
[3]
|
V. A. Bakaev, W. A. Steele. Adsorption of CO2 and Ar on glass surfaces. Computer simulation and experimental study. Journal of Chemical Physics, 1999, 111(21): 9813-9822.
|
|
[4]
|
W. B. Gao, D. L. Tomasko. High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms. Langmuir, 2004, 20(19): 8083-8089.
|
|
[5]
|
O. D. Giovanni, W. Dörfler. Adsorption of supercritical carbon dioxide on silica. Langmuir, 2001, 17(14): 4316-4321.
|
|
[6]
|
H. Grajek. Regeneration of adsorbents by the use of liquid, sub- critical and supercritical carbon dioxide. Adsorption Science & Technology, 2000, 18: 347-371.
|
|
[7]
|
T. Hocker, A. Rajen-dran. Measuring and modeling supercritical adsorption in porous solids. Carbon dioxide on 13X zeolite and on silica gel. Langmuir, 2003, 19(4): 1254-1267.
|
|
[8]
|
S. W. Rutherford, D. D. Do. Adsorption dy-namics of carbon di- oxide on a carbon molecular sieve 5A. Carbon, 2000, 38: 1339- 1350.
|
|
[9]
|
J. Zhou, W. C. Wang. Adsorption and diffusion of supercritical carbon dioxide in slit pores. Langmuir, 2000, 16(21): 8063- 8070.
|
|
[10]
|
E. Pantatosaki, D. Psomadopoulos. Micro-pore size distributions from CO2 using grand canonical Monte Carlo at ambient tem- peratures: Cylindrical versus slit pore geometries. Col-loids and Surfaces A, Physicochemical & Engineering Aspects, 2004, 241 (1-3): 127-135.
|
|
[11]
|
S. Samios, A. K. Stubos. The structure of adsorbed CO2 in slit- like micropores at low and high temperature and the resulting micropore size distribution based on GCMC simulations. Jour- nal of Colloid and Interface Science, 2000, 224(2): 272-290.
|
|
[12]
|
X. Peng, X. Cheng and D. P. Cao. Computer simulation for adsorption and separation of CO2/CH4/H2/N2 pure and mixtures by UMCM-1 and UMCM-2 metal organic frameworks. Journal of Materi-als Chemistry, 2011, 21(30): 11259-11270.
|
|
[13]
|
X. Peng, D. P. Cao and W. C. Wang. Computational study on purification of CO2 from natural gas by C60 intercalated graphite. Industrial & Engineering Chemistry Research, 2010, 49(18): 8787-8796.
|
|
[14]
|
Q. Xu, D. H. Liu and Q. Y. Yang. Li-modified metal-organic frameworks for CO2/CH4 separation: A route to achieving high adsorption selectivity. Journal of Materials Chemistry, 2010, 20 (4): 706-714.
|
|
[15]
|
Q. Y. Yang, Q. Xu and C. L. Zhong. Molecular simulation of separation of CO2 from flue gases in CU-BTC metal-organic framework. AIChE Journal, 2007, 53(11): 2832-2840.
|
|
[16]
|
Z. Yang, X. N. Yang and Z. J. Xu. Molecular simulations of structures and solvation free energies of passivated gold nano- particles in supercritical CO2. Journal of Chemical Physics, 2010, 133(9): Article ID: 094702.
|
|
[17]
|
J. Gross, G. Sadowski. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 2001, 40(4): 1244-1260.
|
|
[18]
|
D. Fu, L. L. Liang and X.-S Li. Investigation of va-por-liquid equilibria for supercritical carbon dioxide and hydrocarbon mix- tures by perturbed-chain statistical associating fluid theory. In- dustrial & Engineering Chemistry Research, 2006, 45(12): 4364- 4370.
|
|
[19]
|
G. T. Kokotailo, S. L. Lawton, D. H. Olson and W. M. Meier. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272: 437- 438.
|
|
[20]
|
H. Li, J. Yan. Evaluating cubic equations of state for calcu-lation of vapor-liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes. Applied Energy, 2009, 86(6): 826-836.
|
|
[21]
|
M. Rzepka, P. Lamp and M. A. De La Casa-Lillo. Phy-sisorption of hydrogen on microporous carbon and carbon nanotubes. The Journal of Physical Chemistry B, 1998, 102(52): 10894-10898.
|