|
[1]
|
柯欢. 神经肽P物质对小鼠毛囊周期影响的研究[D]: [硕士学位论文]. 福州: 福建医科大学, 2015.
|
|
[2]
|
Wynn, T.A. and Ramalingam, T.R. (2012) Mechanisms of Fibrosis: Therapeutic Translation for Fibrotic Disease. Nature Medicine, 18, 1028-1040. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jahoda, C.A. and Reynolds, A.J. (2001) Hair Follicle Dermal Sheath Cells: Unsung Participants in Wound Healing. The Lancet (London, England), 358, 1445-1448. [Google Scholar] [CrossRef]
|
|
[4]
|
Zhou, Z., Zhao, Q., Zhao, J., et al. (2021) Research Progress of Hair Follicle and Related Stem Cells in Scar-Free Wound Healing. Chinese Journal of Reparative and Reconstructive Surgery, 35, 241-245.
|
|
[5]
|
Cheon, S.S., Cheah, A.Y., Turley, S., et al. (2002) Beta-Catenin Stabilization Dysregulates Mesenchymal Cell Proliferation, Motility, and Invasiveness and Causes Aggressive Fibromatosis and Hyperplastic Cutaneous Wounds. Proceedings of the National Academy of Sciences of the United States of America, 99, 6973-6978. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Alam, M., Cooley, J., Plotczyk, M., et al. (2019) Distinct Patterns of Hair Graft Survival after Transplantation into 2 Nonhealing Ulcers: Is Location Everything? Dermatologic Surgery, 45, 557-565. [Google Scholar] [CrossRef]
|
|
[7]
|
Goverman, J., He, W., Martello, G., et al. (2019) The Presence of Scarring and Associated Morbidity in the Burn Model System National Database. Annals of Plastic Surgery, 82, S162-S168. [Google Scholar] [CrossRef]
|
|
[8]
|
Nguyen, A.T.M., Chamberlain, K. and Holland, A.J.A. (2021) Paediatric Chemical Burns: A Clinical Review. European Journal of Pediatrics, 180, 1359-1369. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
刘家祺, 何安琪, 杨燕文, 等. 毛囊单位移植在皮肤创面修复中的应用[J]. 中国美容医学, 2018, 27(2): 15-18.
|
|
[10]
|
Narushima, M., Mihara, M., Yamamoto, Y., et al. (2011) Hair Transplantation for Reconstruction of Scalp Defects Using Artificial Dermis. Dermatologic Surgery, 37, 1348-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Al-Refu, K., Edward, S., Ingham, E., et al. (2009) Expression of Hair Follicle Stem Cells Detected by Cytokeratin 15 Stain: Implications for Pathogenesis of the Scarring Process in Cutaneous Lupus Erythematosus. British Journal of Dermatology, 160, 1188-1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yang, Z., Liu, J., Zhu, N., et al. (2015) Comparison be-tween Hair Follicles and Split-Thickness Skin Grafts in Cutaneous Wound Repair. International Journal of Clinical and Experimental Medicine, 8, 15822-15827.
|
|
[13]
|
Budamakuntla, L., Loganathan, E., Sarvajnamurthy, S.A., et al. (2017) Follicular Unit Grafting in Chronic Nonhealing Leg Ulcers: A Clinical Study. Journal of Cutaneous and Aesthetic Surgery, 10, 200-206. [Google Scholar] [CrossRef]
|
|
[14]
|
Plotczyk, M., Jiménez, F., Limbu, S., et al. (2023) Anagen Hair Follicles Transplanted into Mature Human Scars Remodel Fibrotic Tissue. NPJ Regenerative Medicine, 8, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ito, M., Yang, Z., Andl, T., et al. (2007) Wnt-Dependent De Novo Hair Follicle Regeneration in Adult Mouse Skin after Wounding. Nature, 447, 316-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Plikus, M.V., Guerrero-Juarez, C.F., Ito, M., et al. (2017) Regeneration of Fat Cells from Myofibroblasts during Wound Healing. Science (New York, NY), 355, 748-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tsai, S.Y., Sennett, R., Rezza, A., et al. (2014) Wnt/Beta-Catenin Signaling in Dermal Condensates Is Required for Hair Follicle Formation. Dev Biol, 385(2, 179-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, D., Jarrell, A., Guo, C., et al. (2012) Dermal Beta-Catenin Activity in Response to Epidermal Wnt Ligands Is Required for Fibroblast Proliferation and Hair Follicle Initiation. Development, 139, 1522-1533. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tao, Y., Yang, Q., Wang, L., et al. (2019) Beta-Catenin Activation in Hair Follicle Dermal Stem Cells Induces Ectopic Hair Outgrowth and Skin Fibrosis. Journal of Molecular Cell Biology, 11, 26-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gharzi, A., Reynolds, A.J. and Jahoda, C.A. (2003) Plasticity of Hair Follicle Dermal Cells in Wound Healing and Induction. Experimental Dermatology, 12, 126-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Biernaskie, J., Paris, M., Morozova, O., et al. (2009) SKPs Derive from Hair Follicle Precursors and Exhibit Properties of Adult Dermal Stem Cells. Cell Stem Cell, 5, 610-623. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gines, P., Krag, A., Abraldes, J.G., et al. (2021) Liver Cirrhosis. The Lancet (London, England), 398, 1359-1376. [Google Scholar] [CrossRef]
|
|
[23]
|
Liu, J., Hu, X., Chen, J., et al. (2017) Pericentral Hepato-cytes Produce Insulin-Like Growth Factor-2 to Promote Liver Regeneration during Selected Injuries in Mice. Hepatology (Baltimore, Md), 66, 2002-2015. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cotsarelis, G. (2006) Epithelial Stem Cells: A Folliculocentric View. Journal of Investigative Dermatology, 126, 1459- 1468. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, P., Liu, F., Wu, C., et al. (2015) Feasibility of Human Hair Follicle-Derived Mesenchymal Stem Cells/CultiSpher((R))-G Constructs in Regenerative Medicine. Cell and Tissue Research, 362, 69-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bajpai, V.K., Mistriotis, P. and Andreadis, S.T. (2012) Clonal Multipotency and Effect of Long-Term in Vitro Expansion on Differentiation Potential of Human Hair Follicle Derived Mesenchymal Stem Cells. Stem Cell Research, 8, 74-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xu, Z., He, X., Shi, X., et al. (2018) Analysis of Differentially Expressed Genes among Human Hair Follicle-Derived IPSCs, Induced Hepatocyte-Like Cells, and Primary Hepatocytes. Stem Cell Research & Therapy, 9, Article No. 211. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shi, X., Lv, S., He, X., et al. (2016) Differentiation of Hepato-cytes from Induced Pluripotent Stem Cells Derived from Human Hair Follicle Mesenchymal Stem Cells. Cell and Tissue Research, 366, 89-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Liu, Q., Lv, C., Jiang, Y., et al. (2022) From Hair to Liver: Emerging Application of Hair Follicle Mesenchymal Stem Cell Transplantation Reverses Liver Cirrhosis by Blocking the TGF-Beta/Smad Signaling Pathway to Inhibit Pathological HSC Activation. PeerJ, 10, e12872. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Fearing, B.V. and Van Dyke, M.E. (2016) Activation of Astrocytes in Vitro by Macrophages Polarized with Keratin Biomaterial Treatment. Open Journal of Regenerative Medicine, 5, 1-13. [Google Scholar] [CrossRef]
|
|
[31]
|
Kiani, M.T., Higgins, C.A. and Almquist, B.D. (2018) The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomaterials Science & En-gineering, 4, 1193-1207. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shen, D., Wang, X., Zhang, L., et al. (2011) The Ameliora-tion of Cardiac Dysfunction after Myocardial Infarction by the Injection of Keratin Biomaterials Derived from Human Hair. Biomaterials, 32, 9290-9299. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Laflamme, M.A. and Murry, C.E. (2005) Regenerating the Heart. Nature Biotechnology, 23, 845-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Christman, K.L. and Lee, R.J. (2006) Biomaterials for the Treatment of Myocardial Infarction. Journal of the American College of Cardiology, 48, 907-913. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tachibana, A., Furuta, Y., Takeshima, H., et al. (2002) Fabrication of Wool Keratin Sponge Scaffolds for Long-Term Cell Cultivation. Journal of Biotechnology, 93, 165-170. [Google Scholar] [CrossRef]
|
|
[36]
|
Shavandi, A., Silva, T.H., Bekhit, A.A., et al. (2017) Keratin: Dissolution, Extraction and Biomedical Application. Biomaterials Science, 5, 1699-1735. [Google Scholar] [CrossRef]
|
|
[37]
|
Reya, T., Morrison, S.J., Clarke, M.F., et al. (2001) Stem Cells, Can-cer, and Cancer Stem Cells. Nature, 414, 105-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bonnet, D. and Dick, J.E. (1997) Human Acute Myeloid Leukemia Is Or-ganized as a Hierarchy That Originates from a Primitive Hematopoietic Cell. Nature Medicine, 3, 730-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, H., Wang, X., Chen, Y., et al. (2019) Pten Loss in Lgr5(+) Hair Follicle Stem Cells Promotes SCC Development. Theranostics, 9, 8321-8331. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, K., Liu, F., Sun, Y., et al. (2022) Association of Fibrosis in the Bulge Portion with Hair Follicle Miniaturization in Androgenetic Alopecia. Journal of the American Academy of Dermatology, 86, 213-215. [Google Scholar] [CrossRef] [PubMed]
|