山东中新世山旺组葛属(豆科)小叶的形态及其古生态学意义
Leaflet Morphology of Pueraria (Leguminosae) from the Miocene Shanwang Formation of Shandong Province and Its Palaeoecological Implications
DOI: 10.12677/BR.2012.12003, PDF, HTML, XML,  被引量 下载: 3,476  浏览: 19,112  国家自然科学基金支持
作者: 王祺*, 申思*:中国科学院植物研究所,系统与进化植物学国家重点实验室,北京;徐洪河*:中国科学院南京地质古生物研究所,现代古生物学和地层学国家重点实验室,南京
关键词:
摘要: 葛属Pueraria是豆科蝶形花亚科、菜豆族大豆亚族中最大的、具有三小叶复叶的属,其大多数种为攀援性藤本植物,分布于东亚、南亚、东南亚和大洋洲。化石记录表明,葛属早在中新世就已出现在东亚、巴尔干半岛和高加索地区的亚热带和温带植物群中,目前已知有3个化石种,即中国山旺中新世的荚果化石山旺葛藤P. shanwangensis、山旺和日本数个中、上新世产地的叶、小叶化石鲁葛藤P. miothunbergiana以及克罗地亚和格鲁吉亚阿布哈兹中新世的小叶化石大葛藤P. maxima。本文基于对中新世山旺组最近采集的葛属小叶印痕化石的观察和对现生种葛P. montana小叶的形态比较,研究了该属化石种的小叶形态和发育变异。结果表明,现生种葛与化石种鲁葛藤和大葛藤的小叶都具有不甚发育的间二级脉,这个特征在先前报道的鲁葛藤小叶化石中未见保存。另外,它们的主脉和二级脉远轴侧有时都会分别发出两条挨得很近、角度不同的二级脉和二级脉梳脉,这个特征过去在葛属中则被忽视了。总体上,葛属小叶化石的叶脉特征在中新世广阔的欧亚中纬度地区显示了高度的相似性。目前,仅在中国中新世山旺植物群和日本中新世高峰山组植物群中发现了与现生的葛小叶相似的、具有裂瓣的鲁葛藤小叶化石,但现生葛比化石葛的小叶更大些、似乎发育了更多具有裂瓣的小叶,这可能与中新世以来大气二氧化碳浓度的变化有关。现生葛长在荫蔽生境以及攀援于支持物(如藤架或其他木本植物)上的植株比生于开阔生境以及蔓生的植株发育了更多的、具有裂瓣的小叶,这可能有效促进了整株植物的叶片和冠层中的光照截取和通风散热。据此推测,中国和日本中、上新世的鲁葛藤居群可能比克罗地亚和阿布哈兹中新世的大葛藤居群的生态耐受性更加宽泛,东亚的居群既生于荫蔽的、更多依赖森林的生境中,也长在开阔的、较少依赖森林生境中,甚至蔓生。
Abstract: Pueraria DC. is the largest papilionoid legume, trifoliolate genus of the subtribe Glycininae in the tribe Phaseoleae, the majority species of which are climbing lianas distributed in East Asia, South Asia, Southeast Asia, and Oceania. The known three fossil species of Pueraria described from the subtropical and temperate floras of the Balkan Peninsula, the Caucasus, and eastern Asia respectively are P. shanwangensis (fruit) from the Miocene Shanwang of China, P. miothunbergiana (leaf and leaflet) from the Miocene of Shanwang and numerous localities in the Mio-Pliocene of Japan, and P. maxima (leaflet) from the Miocene of Croatia and Georgian Abkhazia. On the basis of observations on the newly collected Pueraria leaflet impres-sions and comparisons with the leaflets of living P. montana, the morphology and developmental variation of Pueraria leaflet fossils are studied. The result shows that the leaflets of both living species P. montana and fossil species P. miothunbergiana and P. maxima bear poorly developed intersecondary veins, which were not observed in former reports on P. miothunbergiana. Also, two adjacent secondary veins or agrophic veins at different angles are sometimes diverged respectively from the primary vein (midvein) and the exmedial side of secondary veins in both extant and fossil Pueraria leaflets, which is a feature that has long been neglected. Overall, the venation of fossil Pueraria leaflets that are widely occurred across the Miocene of middle lati-tudes in Eurasia is highly similar, but the lobed leaflets similar to those of living P. montana are only discov-ered from the Miocene Shanwang flora of China and Takamine flora of Japan. Extant P. montana bears larger leaflets than fossil Pueraria and seems to have developed more lobed leaflets than fossil P. miothunbergiana does, which might have been related to the change of atmospheric CO2 concentrations since the Miocene onwards. Living individuals of P. montana growing in shady, closed habitats as well as climbing on supports (e.g., pergolas or other woody plants) develop more lobed leaflets than those inhabiting open habitats and trailing, which may efficiently enhance light interception and heat dissipation within leaves and canopies. It is inferred that populations of P. miothunbergiana lived in the Mio-Pliocene of China and Japan may have wider ecological tolerances than those of P. maxima occurred in the Miocene of Croatia and Abkhazia, so the eastern Asian populations may not only live in shady habitats more relied on forests, but also grow in open habitats less relied on forests or even sprawl.
文章引用:王祺, 徐洪河, 申思. 山东中新世山旺组葛属(豆科)小叶的形态及其古生态学意义[J]. 植物学研究, 2012, 1(2): 13-22. http://dx.doi.org/10.12677/BR.2012.12003

参考文献

[1] J. A. Lackey. Phaseoleae DC. (1825). In: R. M. Polhill, R. H. Raven, Eds., Advances in Legume Systematics, Part 1. Kew: Royal Botanic Gardens, 1981: 301-327.
[2] L. J. G. van der Maesen. Revision of the genus Pueraria DC., with some notes on Teyleria Backer. Agricultural University Wageningen Papers 85-1, Netherlands: Agricultural University Wageningen, 1985: 1-132.
[3] L. J. G. van der Maesen. Pueraria, the kudzu and its relatives: An update of the taxonomy. In: M. Sørensen, Ed., Proceedings of the First International Symposium of Tuberous Legumes, Guadleoupe, FWI, 21-24 April 1992, 1994: 55-86.
[4] L. J. G. van der Maesen. Pueraria: Botanical characteristics. In: W. M. Keung, Ed., The Genus Pueraria. Medicinal and Aromatic Plants-Industrial Profiles. London: Taylor & Francis, 2002: 1-28.
[5] C. Niyomdham. Notes on Thai and Indo-Chinese Phaseoleae (Leguminosae-Papilionoideae). Nordic Journal of Botany, 1992, 12(3): 339-346.
[6] J. M. Lock, J. Heald. Legumes of Indo-China, a check-list. Kew: Royal Botanic Gardens, 1994: 116-118.
[7] 吴德邻, 陈忠毅, 黄向旭. A study of Chinese Pueraria[J]. 热带亚热带植物学报, 1994, 2(3): 12-21.
[8] 张奠湘, 陈忠毅. A cladistic analysis of Pueraria DC. (Leguminosae)[J]. 热带亚热带植物学报, 1995, 3(1): 35-40.
[9] J. Lee, T. Hymowitz. A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences. American Journal of Botany, 2001, 88(11): 2064-2073.
[10] B. D. Schrire. Tribe Phaseoleae. In: G. Lewis, B. Schrire, B. Mackinder and M. Lock, Eds., Legumes of the World, Kew: Royal Botanic Gardens, 2005: 393-432.
[11] Z. F. Le. Pueraria DC. In: X. Y. Zhu, Y. F. Du, J. Wen and B. J. Bao, Eds., Legumes of China: A Checklist. Reading: The University of Reading, 2007: 530-535.
[12] 乐志芳. Taxonomic revision of Pueraria DC. (Leguminosae)[D]. Institute of Botany, Chinese Academy of Sciences, 2008.
[13] Q. Wang, S. R. Manchester and D. L. Dilcher. Fruits and foliage of Pueraria (Leguminosae, Papilionoideae) from the Neogene of Eurasia, and their biogeographic implications. American Journal of Botany, 2010, 97(12): 1982-1998.
[14] Z. Y. Li, Q. Dong, T. P. Albright and Q. F. Guo. Natural and human dimensions of a quasi-wild species: The case of kudzu. Biological Invasions, 2011, 13: 2167-2179.
[15] R. A. Pappert, J. L. Hamrick and L. A. Donovan. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. American Journal of Botany, 2000, 87(9): 1240-1245.
[16] I. Forseth, A. Innis. Kudzu (Pueraria montana): History, physiology, and ecology combine to make a major ecosystem threat. Critical Reviews in Plant Sciences, 2004, 23: 401-413.
[17] H. H. Hu, R. W. Chaney. A Miocene flora from Shantung Province, China, part 1. Introduction and systematic considerations. Carnegie Institution of Washington Publication, 1938, 507: 1-82.
[18] 吴征镒. The areal-types of Chinese genera of seed plants[J]. 云南植物研究, 1991, 4(增刊): 1-139.
[19] G. W. Liu, E. B. Leopold. Paleoecology of a Miocene flora from the Shanwang Formation, Shandong Province, Northern East China. Palynology, 1992, 16: 187-212.
[20] H. Yang, S. P. Yang. The Shanwang fossil biota in eastern China: A Miocene Konservat-Lagerstätte in lacustrine deposits. Lethaia, 1994, 27(4): 345-354.
[21] Q. Wang, D. L. Dilcher and T. A. Lott. Podocarpium A. Braun ex Stizenberger 1851 (formerly Podogonium Heer 1857) from the middle Miocene of eastern China, and its paleoecology and biogeography. Acta Palaeobotanica, 2007, 47(1): 237-251.
[22] 孙博. Shanwang plant fossils[M]. Ji’nan: Shandong Science and Technology Press, 1999: 1-167.
[23] 杨式溥, 孙博. Palaeoecology of Miocene Shanwang biota in Shandong Province, East China[J]. 古地理学报, 2000, 2(4): 1- 11.
[24] 李浩敏. The geological age of Shanwang flora[A]. In: Palaeontological Society of China, Ed., Selected Papers of the 12th Annual Meeting of the Palaeontological Society of China[C]. Beijing: Science Press, 1981: 158-162.
[25] 王祺. On the identity of Podogonium Heer 1857, nom. illeg. (Leguminosae) from the Miocene Shanwang flora of Shandong[J]. 植物分类学报, 2006, 43(2): 197-203.
[26] Q. Wang, D. L. Dilcher, X. Y. Zhu, Y. L. Zhou and T. A. Lott. Fruits and leaflets of Wisteria (Leguminosae, Papilionoideae) from the Miocene of Shandong Province, eastern China. Interna- tional Journal of Plant Sciences, 2006, 167(5): 1061-1074.
[27] 张静, 王祺. Further observations on the pod fossils of Wisteria (Leguminosae) from the Middle Miocene Shanwang Formation of Linqu, Shandong Province[J]. 古生物学报, 2010, 49(1): 87- 95.
[28] W. M. Wang, T. Yamanoi. New data on Miocene pollen floras of the Oga Peninsula, Northeast Honshu of Japan, with comparison to those of Northern China. Japanese Journal of Palynology, 1996, 42(1): 1-13.
[29] T. Deng. Chinese Neogene mammal biochronology. Vertebrata PalAsiatica, 2006, 44(2): 143-163.
[30] C. A. E. Strömberg, E. M. Friis, M. M. Liang, L. Werdelin and Y. L. Zhang. Palaeoecology of an Early-Middle Miocene lake in China: Preliminary interpretations based on phytoliths from the Shanwang basin. Vertebrata PalAsiatica, 2007, 45(2): 145-160.
[31] 王祺. Pulvini of Cercis leaves from the Miocene Shanwang Formation of Shandong Province and the early evolution of the pulvinus in Leguminosae[J]. 古生物学报, 2012, 51(1): 1-13.
[32] Q. Wang. Fruits of Hemitrapa (Trapaceae) from the Miocene of eastern China, their correlation with Sporotrapoidites erdtmanii pollen and paleobiogeographic implications. Journal of Paleontology, 2012, 86(1): 156-166.
[33] B. Ellis, D. C. Daly, L. J. Hickey, et al. Manual of leaf architecture. Ithaca & New York: Cornell University Press, 2009: 1-190.
[34] T. Hayashi. Fossils from Chōjabaru, Iki Island, Japan. Nagasaki: Shima-No-Kagaku Kenkyusho, Ishida-Cho, 1975: 1-120.
[35] K. Uemura. Late Miocene floras in Northeast Honshu, Japan. Tokyo: National Science Museum, 1988: 1-197.
[36] K. Ozaki. Miocene floras of the Pacific side of central Japan 1. In kyoyama flora. Science Reports of the Yokohama National University, Section 2. Biological and Geological Sciences, 1974, 21: 1-21.
[37] K. Ozaki. Late Miocene and Pliocene floras in central Honshu, Japan. Bulletin of Kanagawa Prefectural Museum Natural Science Special Issue, Yokohama: Kanagawa Prefectural Museum, 1991: 1-244.
[38] H. Ina. Miocene fossils of the Mizunami group, central Japan 1. Plants of the Kani and Mizunami basins. Monograph of the Mizunami Fossil Museum, 1981, 2: 1-20.
[39] T. Tanai. The revision of the so-called Alangium leaves from the Paleogene of Hokkaido, Japan. Tokyo: Bulletin of the National Science Museum, Series C, 1989, 15(4): 121-149.
[40] H. Tsugawa, M. Tange. Prediction equation for estimating leaflet area of kudzu vines (Pueraria lobata Ohwi). Science Reports of Faculty of Agriculture, Kobe University, 1981, 14(2): 249-252.
[41] M. Barkoulas, C. Galinha, G. S. P. rigg and M. Tsiantis. From genes to shape: Regulatory interactions in leaf development. Current Opinion in Plant Biology, 2007, 10(6): 660-666.
[42] T. McLellan. Development and morphometrics of leaves. In: M. H. Kurmann, A. R. Hemsley, Eds., The Evolution of Plant Architecture. Kew: Royal Botanic Gardens, 1999: 169-182.
[43] G. K. Sharma, C. Chandler and L. Salemi. Environmental pollution and leaf cuticular variation in kudzu (Pueraria lobata Willd.). Annals of Botany, 1980, 45(1): 77-80.
[44] T. W. Sasek, B. R. Strain. Effects of carbon dioxide enrichment on the growth and morphology of kudzu (Pueraria lobata). Weed Science, 1988, 36(1): 28-36.
[45] T. W. Sasek, B. R. Strain. Effects of carbon dioxide enrichment on the expansion and size of kudzu (Pueraria lobata) leaves. Weed Science, 1989, 37(1): 23-28.
[46] T. D. Sharkey, F. Loreto. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia, 1993, 95(3): 328-333.
[47] A. E. Wiberley, A. R. Linskey, T. G. Falbel and T. D. Sharkey. Development of the capacity for isoprene emission in kudzu. Plant, Cell and Environment, 2005, 28(7): 898-905.
[48] 王红, 蔡永立, 王亮等. Influence on the sexual reproduction of Pueraria lobata (Willd.) Ohwi in different habitats and with dif-ferent scramble manner in Tiantong National Forest Park, Zhe-jiang[J]. 石河子大学学报(自然科学版), 2005, 23(5): 601- 605.
[49] H. Tsugawa, T. Shimuzu, T. W. Sasek and K. Nishikawa. The climbing strategy of kudzu-vine (Pueraria lobata Ohwi). Science Reports of Faculty of Agriculture, Kobe University, 1992, 20(1): 1-6.
[50] S. A. Schnitzer, F. Bongers. The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 2002, 17(5): 223-230.
[51] R. A. Londré, S. A. Schnitzer. The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology, 2006, 87(12): 2973-2978.
[52] 陈亚军, 陈军文, 蔡志全. Lianas and their functions in tropical forests[J]. 植物学通报, 2007, 24(2): 240-249.
[53] R. J. Burnham. An overview of the fossil record of climbers: Bejucos, sogas, trepadoras, lianas, cipós, and vines. Revista Brasileira de Paleontologia, 2009, 12(2): 149-160.
[54] 陶君容, 孙博, 杨洪. Plant megafossils of the Shanwang formation[A]. In: B. Sun, Ed., Shanwang Plant Fossils[C]. Ji’nan: Shandong Science and Technology, 1999: 13-89.
[55] Z. F. Guo, J. Q. Liu and X. Y. Chen. Effect of Miocene basaltic volcanism in Shanwang (Shandong Province, China) on environmental changes. Science in China Series D: Earth Sciences, 2007, 50(12): 1823-1827.
[56] Z. An, J. E. Kutzbach, W. L. Prell and S. C. Porter. Evolution of Asian monsoons and phased uplift of the Himalayan: Tibetan plateau since late Miocene times. Nature, 2001, 411(6833): 62- 66.
[57] Z. Guo, W. F. Ruddiman, Q. Hao, et al. Onset of Asian desertification by 22 myr ago inferred from loess deposits in China. Na- ture, 2002, 416(6877): 159-163.
[58] X. J. Sun, P. X. Wang. How old is the Asian monsoon system? Paleobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4): 181-222.
[59] S. Fauquette, J.-P. Suc, A. Bertini, et al. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 238(1-4): 281-301.
[60] F. Unger. Sylloge plantarum fossilium. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch- Naturwissenschaftlichte Classe, 1864, 22(1): 1-36.
[61] A. A. Kolakovsky. A second addition to the Pliocene flora of Kodor. Trudy Sukhumskogo Botanicheskogo Sada, 1959, 12: 209-262.
[62] A. A. Kolakovsky. A Pliocene flora of the Kodor River. Sukhumskiĭ Botanicheskiĭ Sad Monografii 1. Sukhumi: Izdatel’stvo Akademii Nauk Gruzinskoĭ SSR, 1964: 1-220.
[63] N. K. Pantic. Über die vergesseneen sarmatischen Floren Radoboj und Sused, ihre paläophyto-geographische und biostratigraphische Bedeutung. In: J. Kovar-Eder, Ed., Palaeovegetational Development in Europe and Regions Relevant to Its Palaeofloristic Evolution. Vienna: Museum of Natural History Vienna, 1992: 205-210.
[64] A. K. Shakryl. Leguminosae species from the Tertiary of Abkhazia. In: P. S. Herendeen, D. L. Dilcher, Eds., Advances in Legume Systematics, Part 4: The Fossil Record. Kew: Royal Botanic Gardens, 1992: 189-206.
[65] D. H. Mai. Tertiäre vegetationsgeschichte Europas. Jena, Stuttgart & New York: Gustav Fischer Verlag, 1995: 1-691.
[66] J. Kovar-Eder. Vegetation dynamics in Europe during the Neogene. In: J. W. F. Reumer, W. Wessels, Eds., Distribution and Migration of Tertiary Mammals in Eurasia, A Volume in Honour of Hans de Bruijn. Deinsea, 2003, 10: 373-392.
[67] S. Kohei. K-Ar age of the Arafune Lava and its bearing on age of the Kabutoiwa fossil fauna and flora. Bulletin of Gunma Museum of Natural History, 2007, 11: 53-61.
[68] M. Pagani, M. A. Arthur and K. H. Freeman. Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 1999, 14(3): 273-292.
[69] P. N. Pearson, M. R. Palmer. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406 (6797): 695-699.
[70] 唐自华. Cenozoic warm intervals and their implications for the anthropogenic warming[J]. 第四纪研究, 2011, 31(6): 1053- 1059.
[71] D. J. Beerling, D. L. Royer. Convergent Cenozoic CO2 history. Nature Geoscience, 2011, 4: 418-420.
[72] Y. Cui, L. R. Kump, A. J. Ridgwell, et al. Slow release of fossil carbon during the Palaeocene: Eocene thermal maximum. Nature Geoscience, 2011, 4: 481-485.
[73] S. Vogel. “Sun leaves” and “shade leaves”: Differences in convective heat dissipation. Ecology, 1968, 49(6): 1203-1204.
[74] S. Vogel. Convective cooling at low airspeeds and the shapes of broad leaves. Journal of Experimental Botany, 1970, 21(66): 91- 101.
[75] K. J. Niklas. The effect of leaf-lobing on the interception of direct solar radiation. Oecologia, 1989, 80(1): 59-64.
[76] D. F. Parkhurst, O. L. Loucks. Optimal leaf size in relation to environment. Journal of Ecology, 1972, 60(2): 505-537.
[77] H. S. Horn. The adaptive geometry of trees. Princeton & New Jersey: Princeton University Press, 1971: 1-146.
[78] 中国科学院植物研究所、南京地质古生物研究所《中国新生代植物》编写组. Fossil plants of China, 3 Cenozoic plants from China[M]. Beijing: Science Press, 1978: 1-232.
[79] S. X. Guo, Z. K. Zhou. The megafossil legumes from China. In: P. S. Herendeen, D. L. Dilcher, Eds., Advances in Legume Systematics, Part 4: The Fossil Record. Kew: Royal Botanic Gardens, 1992: 207-223.