[1]
|
Almasi, D., et al. (2020) Fabrication of a Novel Hydroxyapatite/Polyether Ether Ketone Surface Nanocomposite via Fric-tion Stir Processing for Orthopedic and Dental Applications. Progress in Biomaterials, 9, 35-44.
https://doi.org/10.1007/s40204-020-00130-7
|
[2]
|
Liu, C.C., et al. (2020) the Effects of Three Cold Plasma Treat-ments on the Osteogenic Activity and Antibacterial Property of PEEK. Dental Materials, 37, 81-93. https://doi.org/10.1016/j.dental.2020.10.007
|
[3]
|
Wang, S.N., et al. (2018) Enhanced Antibacterial Property and Osteo-Differentiation Activity on Plasma Treated Porous Polyetheretherketone with Hierarchical Mi-cro/Nano-Topography. Journal of Biomaterials Science, Polymer Edition, 29, 520-542. https://doi.org/10.1080/09205063.2018.1425181
|
[4]
|
朱策, 丰干钧, 刘立岷, 等. 骨修复聚醚醚酮材料改性的研究进展[J]. 华西医学, 2022, 37(10): 1441-1449.
|
[5]
|
Okada, Y., Furumatsu, T., Miyazawa, S., et al. (2014) Modi-fication of the Cell Adhesion and Hydrophilic Characteristics of Poly(Ether-Ether-Ketone) by 172-Nm Xenon Excimer Radiation. Bio-Medical Materials and Engineering, 25, 169-175. https://doi.org/10.3233/BME-151267
|
[6]
|
Guo, L., et al. (2022) Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces. Materials, 15, Article No. 2225.
https://doi.org/10.3390/ma15062225
|
[7]
|
Guo, L., Smeets, R., Kluwe, L., et al. (2019) Cytocompatibility of Tita-nium, Zirconia and Modified PEEK after Surface Treatment Using UV Light or Non-Thermal Plasma. International Journal of Molecular Sciences, 20, Article No. 5596. https://doi.org/10.3390/ijms20225596
|
[8]
|
Wang, Y.J., Jin, Y.B., Chen, Y.Y., et al. (2022) A Preliminary Study on Surface Bioactivation of Polyaryletherketone by UV-Grafting with PolyNaSS: Influence on Osteogenic and Antibacterial Activities. Journal of Biomaterials Science. Polymer Edition, 33, 1845-1865. https://doi.org/10.1080/09205063.2022.2088524
|
[9]
|
Cordero, D., López-Álvarez, M., Rodríguez-Valencia, C., et al. (2013) In Vitro Response of Pre-Osteoblastic Cells to Laser Microgrooved PEEK. Biomedical Materials, 8, Article ID: 055006.
https://doi.org/10.1088/1748-6041/8/5/055006
|
[10]
|
Riveiro, A., Soto, R., Comesaña, R., et al. (2012) Laser Sur-face Modification of PEEK. Applied Surface Science, 258, 9437-9442. https://doi.org/10.1016/j.apsusc.2012.01.154
|
[11]
|
Huang, Z.H., Wan, Y.Z., Zhu, X.B., et al. (2021) Simultaneous Engineering of Nanofillers and Patterned Surface Macropores of Graphene/Hydroxyapatite/Polyetheretherketone Ternary Composites for Potential Bone Implants. Materials Science & Engineering C, 123, Article ID: 111967. https://doi.org/10.1016/j.msec.2021.111967
|
[12]
|
刘红,宋效庆,刘秀菊等. 飞秒激光对聚醚醚酮成骨效能的体内实验研究[C]//中华口腔医学会口腔材料专业委员会. 第十一次全国口腔材料学术会暨纤维增强材料专题讨论会暨第三次亚洲牙科纤维增强复合材料学术研讨会论文集. 2016: 1.
|
[13]
|
Koch, F.P., Weng, D., Kramer, S. and Wagner, W. (2013) Soft Tissue Healing at One-Piece Zirconia Implants Compared to Titanium and PEEK Implants of Identical Design: A Histomorphometric Study in the Dog. The International Journal of Periodontics & Restorative Den-tistry, 33, 669-677. https://doi.org/10.11607/prd.1043
|
[14]
|
Sunarso, Tsuchiya, A., Fukuda, N., et al. (2018) Effect of Micro-Roughening of Poly(Ether Ether Ketone) on Bone Marrow Derived Stem Cell and Macrophage Responses, and Osseointegration. Journal of Biomaterials Science, Polymer Edition, 29, 1375-1388. https://doi.org/10.1080/09205063.2018.1461448
|
[15]
|
Marianella, S., et al. (2021) Effect of Surface Treatment and Manufacturing Process on the Shear Bond Strength of Veneering Composite Resin to Polyetherketoneketone (PEKK) and Polyetheretherketone (PEEK). The Journal of Prosthetic Dentistry, 128, 1061-1066. https://doi.org/10.1016/j.prosdent.2021.02.003
|
[16]
|
Zhao, Y., Wong, H.M., Wang, W., et al. (2013) Cytocompati-bility, Osseointegration, and Bioactivity of Three-Dimen- sional Porous and Nanostructured Network on Polyetherether-ketone. Biomaterials, 34, 9264-9277.
https://doi.org/10.1016/j.biomaterials.2013.08.071
|
[17]
|
Ouyang, L., Zhao, Y., Jin, G., et al. (2016) Influence of Sulfur Content on Bone Formation and Antibacterial Ability of Sulfonated PEEK. Biomaterials, 83, 115-126. https://doi.org/10.1016/j.biomaterials.2016.01.017
|
[18]
|
Hieda, A., Uemura, N., Hashimoto, Y., et al. (2017) In Vi-vo Bioactivity of Porous Polyetheretherketone with a Foamed Surface. Dental Materials Journal, 36, 222-229. https://doi.org/10.4012/dmj.2016-277
|
[19]
|
Huo, S.C., Meng, X.C., Zhang, S.T., et al. (2020) Hydrofluoric Acid and Nitric Acid Co-Treatment for Biofunctionalization of Polyetheretherketone in M2 Macrophage Polarization and Os-teogenesis. Journal of Biomedical Materials Research Part A, 109, 879-892. https://doi.org/10.1002/jbm.a.37079
|
[20]
|
李中杰, 潘宇, 吴晓敏, 等. 聚醚醚酮材料表面改性后成骨效能的研究进展[J]. 广东医学, 2019, 40(24): 3481-3484.
|
[21]
|
Wu, J., Li, L., Fu, C., et al. (2018) Micro-Porous Polyether-etherketone Implants Decorated with BMP-2 via Phosphorylated Gelatin Coating for Enhancing Cell Adhesion and Os-teogenic Differentiation. Colloids and Surfaces B: Biointerfaces, 169, 233-241. https://doi.org/10.1016/j.colsurfb.2018.05.027
|
[22]
|
Zheng, Y.Y., et al. (2015) Bone-Like Apatite Coating on Func-tionalized Poly(Etheretherketone) Surface via Tailored Silanization Layers Technique. Materials Science & Engineering C, Materials for Biological Applications, 55, 512-523.
https://doi.org/10.1016/j.msec.2015.05.070
|
[23]
|
Johansson, P., Jimbo, R., Naito, Y., Kjellin, P., Currie, F. and Wennerberg, A. (2016) Polyether Ether Ketone Implants Achieve Increased Bone Fusion When Coated with Nano-Sized Hydroxyapatite: A Histomorphometric Study in Rabbit Bone. International Journal of Nanomedicine, 11, 1435-1442. https://doi.org/10.2147/IJN.S100424
|
[24]
|
肖天华, 刘荣涛, 庞贻宇, 等. 骨植入聚醚醚酮材料表面改性的研究进展[J]. 广东工业大学学报, 2021, 38(2): 73- 82.
|
[25]
|
Della Vecchia, N.F., et al. (2014) Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties. Langmuir: The ACS Journal of Surfaces and Colloids, 30, 9811-9818.
|
[26]
|
王娜. 聚多巴胺修饰磺化聚醚醚酮的制备及性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2019.
|
[27]
|
Chen, T.J., Chen, Q.C., Fu, H.B., et al. (2021) Construction and Performance Evaluation of a Sustained Re-lease Implant Material Polyetheretherketone with Antibacterial Properties. Materials Science and Engineering: C, 126, Article ID: 112109.
|
[28]
|
Rosa, V., Xie, H., Dubey, N., et al. (2016) Graphene Oxide-Based Substrate: Physical and Surface Characterization, Cytocompatibility and Differentiation Potential of Dental Pulp Stem Cells. Dental Materials, 32, 1019-1025.
https://doi.org/10.1016/j.dental.2016.05.008
|
[29]
|
Chung, C., Kim, Y., Shin, D., et al. (2013) Biomedical Applica-tions of Grapheme and Graphene Oxide. Accounts of Chemical Research, 46, 2211-2224. https://doi.org/10.1021/ar300159f
|
[30]
|
Zou, F.M., Zhou, H.J., Jeong, D.Y., et al. (2017) Wrinkled Sur-face-Mediated Antibacterial Activity of Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces, 9, 1343-1351. https://doi.org/10.1021/acsami.6b15085
|
[31]
|
Ouyang, L., Deng, Y., Yang, L., et al. (2018) Gra-phene-Oxide-Decorated Microporous Polyetheretherketone with Superior Antibacterial Capability and in Vitro Osteo-genesis for Orthopedic Implant. Macromolecular Bioscience, 18, e1800036. https://doi.org/10.1002/mabi.201800036
|
[32]
|
Guo, C., Lu, R., Wang, X. and Chen, S. (2021) Antibacterial Activity, Bio-Compatibility and Osteogenic Differentiation of Graphene Oxide Coating on 3D-Network Poly-Ether-Ether-Ketone for Orthopaedic Implants. Journal of Materials Science: Materials in Medicine, 32, Article No. 135. https://doi.org/10.1007/s10856-021-06614-7
|