|
[1]
|
Rowlett, V.W. and Margolin, W. (2015) The Min System and Other Nucleoid-Independent Regulators of Z Ring Positioning. Frontiers in Microbiology, 6, Article No. 478. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Adams, D.W. and Errington, J. (2009) Bacterial Cell Division: Assembly, Maintenance and Disassembly of the Z Ring. Nature Reviews Microbiology, 7, 642-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rothfield, L., Justice, S. and Garcia-Lara, J. (1999) Bacterial Cell Division. Annual Review of Genetics, 33, 423-448. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pichoff, S. and Lutkenhaus, J. (2001) Escherichia coli Division Inhibitor MinCD Blocks Septation by Preventing Z-Ring Formation. Journal of Bacteriology, 183, 6630-6635. [Google Scholar] [CrossRef]
|
|
[5]
|
Zhou, H., Schulze, R., Cox, S., Saez, C., Hu, Z. and Luthenhaus, J. (2005) Analysis of MinD Mutations Reveals Residues Required for MinE Stimulation of the MinD ATPase and Residues Required for MinC Interaction. Journal of Bacteriology, 187, 629-638. [Google Scholar] [CrossRef]
|
|
[6]
|
Zhao, C.R., De Boer, P.A. and Rothfield, L.I. (1995) Proper Placement of the Escherichia coli Division Site Requires Two Functions That Are Associated with Different Domains of the MinE Protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 4313-4317. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Huang, J., Cao, C. and Luthenhaus, J. (1996) Interaction between FtsZ and Inhibitors of Cell Division. Journal of Bacteriology, 178, 5080-5085. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Luthenhaus, J. (2007) Assembly Dynamics of the Bacterial MinCDE System and Spatial Regulation of the Z Ring. Annual Review of Biochemistry, 76, 539-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Patrick, J.E. and Kearns, D.B. (2008) MinJ (YvjD) Is a Topological Determinant of Cell Division in Bacillus subtilis. Molecular Microbiology, 70, 1166-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
卞丽. 蓝藻细胞分裂关键蛋白FtsZ的性质及其调控[D]: [硕士学位论文]. 西安: 西北大学, 2019.
|
|
[11]
|
Maple, J. and Moller, S.G. (2007) Plastid Division: Evolution, Mechanism and Complexity. Annals of Botany, 99, 565-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, X. and Luthenhaus, J. (2003) FtsZ Ring: The Eubacterial Division Apparatus Conserved in Archaebacteria. Molecular Microbiology, 21, 313-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Walsh, J.C., Angatmann, C.N., Bisson-Filho, A.W., Garner, E.C., Duggin, I.G. and Curmi, P.M.G. (2019) Division Plane Placement in Pleomorphic Archaea Is Dynamically Coupled to Cell Shape. Molecular Microbiology, 112, 785-799. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Szeto, T.H., Rowland, S.L., Rothfield, L.I. and King, G.F. (2002) Membrane Localization of MinD Is Mediated by a C-Terminal Motif That Is Conserved across Eubacteria, Archaea, and Chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 15693-15698. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cordell, S.C., Aaderson, R.E. and Lowe, J. (2001) Crystal Structure of the Bacterial Cell Division Inhibitor MinC. The EMBO Journal, 20, 2454-2461. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hu, Z. and Luthenhaus, J. (2000) Analysis of MinC Reveals Two Independent Domains Involved in Interaction with MinD and FtsZ. Journal of Bacteriology, 182, 3965-3971. [Google Scholar] [CrossRef]
|
|
[17]
|
Shen, B. and Luthenhaus, J. (2009) The Conserved C-Terminal Tail of FtsZ Is Required for the Septal Localization and Division Inhibitory Activity of MinC(C)/MinD. Molecular Microbiology, 72, 410-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wu, W., Park, K.T., Holyoak, T. and Luthenhaus, J. (2011) Determination of the Structure of the MinD-ATP Complex Reveals the Orientation of MinD on the Membrane and the Relative Location of the Binding Sites for MinE and MinC. Molecular Microbiology, 79, 1515-1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ma, L., King, G.F. and Rothfield, L. (2004) Positioning of the MinE Binding Site on the MinD Surface Suggests a Plausible Mechanism for Activation of the Escherichia coli MinD ATPase during Division Site Selection. Molecular Microbiology, 54, 99-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Szeto, T.H., Rowland, S.L., Habrukowich, C.L. and King, G.F. (2003) The MinD Membrane Targeting Sequence Is a Transplantable Lipid-Binding Helix. The Journal of Biological Chemistry, 278, 40050-40056. [Google Scholar] [CrossRef]
|
|
[21]
|
Hayashi, I., Oyama, T. and Morikawa, K. (2001) Structural and Functional Studies of MinD ATPase: Implications for the Molecular Recognition of the Bacterial Cell Division Apparatus. The EMBO Journal, 20, 1819-1828. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Huang, K.C., Meir, Y. and Wingreen, N.S. (2003) Dynamic Structures in Escherichia coli: Spontaneous Formation of MinE Rings and MinD Polar Zones. Proceedings of the National Academy of Sciences of the United States of America, 100, 12724-12728. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
King, G.F., Shih, Y.L., Maciejewski, M.W., Bains, N.P., Pan, B., Rowland, S.L., Mullen, G.P. and Rothfield, L.I. (2000) Structural Basis for the Topological Specificity Function of MinE. Nature Structural Biology, 7, 1013-1017. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. and Schwille, P. (2008) Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro. Science (New York, N.Y.), 320, 789-792. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kruse, K., Howard, M. and Margolin, W. (2007) An Experimentalist’s Guide to Computational Modelling of the Min System. Molecular Microbiology, 63, 1279-1284. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Veiga, H., Joege, A.M. and Pinho, M.G. (2011) Absence of Nucleoid Occlusion Effector Noc Impairs Formation of Orthogonal FtsZ Rings during Staphylococcus aureus Cell Division. Molecular Microbiology, 80, 1366-1380. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
张婷婷. 铜绿假单胞菌调控蛋白MinC与MinD聚合的特性[D]: [硕士学位论文]. 西安: 西北大学, 2021.
|
|
[28]
|
黄海艳. 铜绿假单胞菌FtsZ及其调控系统的生化特性[D]: [硕士学位论文]. 西安: 西北大学, 2018.
|
|
[29]
|
Lorenzoni, A.S.G., Dantas, G.C., Bergsma, T., Ferreira, H. and Scheffers, D.J. (2017) Xanthomonas citri MinC Oscillates from Pole to Pole to Ensure Proper Cell Division and Shape. Frontiers in Microbiology, 8, Article No. 1352. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yan, Y., Wang, Y., Yang, X., Fang, Y., Cheng, G., Zou, L. and Chen, G. (2022) The MinCDE Cell Division System Participates in the Regulation of Type III Secretion System (T3SS) Genes, Bacterial Virulence, and Motility in Xanthomonas oryzae Pv. oryzae. Microorganisms, 10, Article No. 1549. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Parti, R.P., Biswas, D., Helgeson, S., Michael, F.S., Cox, A. and Dillon, J.A. (2011) Attenuated Virulence of Min Operon Mutants of Neisseria gonorrhoeae and Their Interactions with Human Urethral Epithelial Cells. Microbes and Infection, 13, 545-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Macdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Dickson, K.A., Brahmbhatt, V.N., Pattison, S.T., James, A.C., Al-Bakri, G., Straw, R.C., Stillman, B., Graham, R.M. and Brahmbhatt, H. (2007) Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell, 11, 431-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Galli, E., Poidevin, M., Le-Bars, R., Desfontaines, J.M., Muresan, L., Paly, E., Yamaichi, Y. and Barre, F.X. (2016) Cell Division Licensing in the Multi-Chromosomal Vibrio cholerae Bacterium. Nature Microbiology, 1, Article No. 16094. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E. and Errington, J. (1998) Polar Localization of the MinD Protein of Bacillus subtilis and Its Role in Selection of the Mid-Cell Division Site. Genes and Development, 12, 3419-3430. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Valenčikova, R., Krascsenitsova, E., Labajova, N., Makroczyova, J. and Barak, I. (2018) Clostridial DivIVA and MinD Interact in the Absence of MinJ. Anaerobe, 50, 22-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Maccready, J.S., Schossau, J., Oateryoung, K.W. and Ducat, D.C. (2017) Robust Min-System Oscillation in the Presence of Internal Photosynthetic Membranes in Cyanobacteria. Molecular Microbiology, 103, 483-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mazouni, K., Domain, F., Cassier-Chauvant, C. and Chauvat, F. (2004) Molecular Analysis of the Key Cytokinetic Components of Cyanobacteria: FtsZ, ZipN and MinCDE. Molecular Microbiology, 52, 1145-1158. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Erickson, H.P. and Osawa, M. (2017) FtsZ Constriction Force: Curved Protofilaments Bending Membranes. Sub-Cellular Biochemistry, 84, 139-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, G.W., Burkhardt, D., Gross, C. and Weissman, J.S. (2014) Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell, 157, 624-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ghosal, D., Trambaiolo, D., Amos, L.A. and Lowe, J. (2014) MinCD Cell Division Proteins Form Alternating Copolymeric Cytomotive Filaments. Nature Communications, 5, Article No. 5341. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Huang, H., Wang, P., Bian, L., Osawa, M., Erickson, H.P. and Chen, Y. (2018) The Cell Division Protein MinD from Pseudomonas aeruginosa Dominates the Assembly of the MinC-MinD Copolymers. The Journal of Biological Chemistry, 293, 7786-7795. [Google Scholar] [CrossRef]
|
|
[42]
|
De-Boer, P.A., Crossley, R.E. and Rothfield, L.I. (1988) Isolation and Properties of MinB, a Complex Genetic Locus Involved in Correct Placement of the Division Site in Escherichia coli. Journal of Bacteriology, 170, 2106-2112. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Eun, Y.J., Ho, P.Y., Kim, M., Larussa, S., Robert, L., Renner, L.D., Schmid, A., Garner, E. and Amir, A. (2018) Archaeal Cells Share Common Size Control with Bacteria despite Noisier Growth and Division. Nature Communications, 3, 148-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Mulder, E. and Woldringh, C.L. (1989) Actively Replicating Nucleoids Influence Positioning of Division Sites in Escherichia coli Filaments Forming Cells Lacking DNA. Journal of Bacteriology, 171, 4303-4314. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Thormann, K.M., Beta, C. and Kuhn, M.J. (2022) Wrapped Up: The Motility of Polarly Flagellated Bacteria. Annual Review of Microbiology, 76, 349-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Howery, K.E., Clemmerl, K.M., Simsek, E., Kim, M. and Rather, P.N. (2015) Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus Mirabilis. Journal of Bacteriology, 197, 2499-2507. [Google Scholar] [CrossRef]
|
|
[47]
|
Chiou, P.Y., Luo, C.H., Chang, K.C. and Lin, N.T. (2013) Maintenance of the Cell Morphology by MinC in Helicobacter pylori. PLOS ONE, 8, e71208. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Schuhmacher, J.S., Rossmann, F., Dempwolff, F., Knauer, C., Altegoerl, F., Steinchen, W., Dorrich, A.K., Klingl, A., Stephan, M., Linne, U., Thormann, K.M. and Bange, G. (2015) MinD-Like ATPase FlhG Effects Location and Number of Bacterial Flagella during C-Ring Assembly. Proceedings of the National Academy of Sciences of the United States of America, 112, 3092-3097. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Schuhmacher, J.S., Thormann, K.M. and Bange, G. (2015) How Bacteria Maintain Location and Number of Flagella? FEMS Microbiology Reviews, 39, 812-822. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Taviti, A.C. and Beuria, T.K. (2019) Bacterial Min Proteins beyond the Cell Division. Critical Reviews in Microbiology, 45, 22-32. [Google Scholar] [CrossRef]
|
|
[51]
|
Parti, R.P., Biswas, D., Wang, M., Liao, M. and Dillon, J.A. (2011) A MinD Mutant of Enterohemorrhagic E. coli O157:H7 Has Reduced Adherence to Human Epithelial Cells. Microbial Pathogenesis, 51, 378-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Parti, R.P., Horbay, M.A., Liao, M. and Dillon, J.A. (2013) Regulation of MinD by OxyR in Neisseria gonorrhoeae. Research in Microbiology, 164, 406-415. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Ahlund, M.K., Ryden, P., Sjostedt, A. and Stoven, S. (2010) Directed Screen of Francisella novicida Virulence Determinants Using Drosophila melanogaster. Infection and Immunity, 78, 3118-3128. [Google Scholar] [CrossRef]
|
|
[54]
|
Su, J., Yang, J., Zhao, D., Kawula, T.H., Banas, J.A. and Zhang, J.R. (2007) Genome-Wide Identification of Francisella tularensis Virulence Determinants. Infection and Immunity, 75, 3089-3101. [Google Scholar] [CrossRef]
|
|
[55]
|
Anthony, L.S., Cowley, S.C., Mdluli, K.E. and Nano, F.E. (1994) Isolation of a Francisella tularensis Mutant That Is Sensitive to Serum and Oxidative Killing and Is Avirulent in Mice: Correlation with the Loss of MinD Homologue Expression. FEMS Microbiology Letters, 124, 157-165. [Google Scholar] [CrossRef]
|
|
[56]
|
Wu, G., Zhang, Y., Wang, B., Li, K., Lou, Y., Zhao, Y. and Liu, F. (2021) Proteomic and Transcriptomic Analyses Provide Novel Insights into the Crucial Roles of Host-Induced Carbohydrate Metabolism Enzymes in Xanthomonas oryzae Pv. oryzae Virulence and Rice-Xoo Interaction. Rice (New York, N.Y.), 14, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Terbush, A.D., Yoshida, Y. and Oateroung, K.W. (2013) FtsZ in Chloroplast Division: Structure, Function and Evolution. Current Opinion in Cell Biology, 25, 461-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Nakanishi, H., Suzuki, K., Kabeya, Y. and Miyagishima, S.Y. (2009) Plant-Specific Protein MCD1 Determines the Site of Chloroplast Division in Concert with Bacteria-Derived MinD. Current Biology, 19, 151-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Maple, J., Vojta, L., Soll, J. and Moller, S.G. (2007) ARC3 Is a Stromal Z-Ring Accessory Protein Essential for Plastid Division. EMBO Reports, 8, 293-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Callaghan, A.J., Marcaide, M.J., Stead, J.A., Mcdowall, K.J., Scott, W.G. and Luisi, B.F. (2005) Structure of Escherichia coli RNase E Catalytic Domain and Implications for RNA Turnover. Nature, 437, 1187-1191. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Carpousis, A.J. (2007) The RNA Degradosome of Escherichia coli: An MRNA-Degrading Machine Assembled on RNase E. Annual Review of Microbiology, 61, 71-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Montero-Llopis, P., Jackson, A.F., Sliusarenko, O., Surovtsev, I., Heinritz, J., Emonet, T. and Jacoba-Wagner, C. (2010) Spatial Organization of the Flow of Genetic Information in Bacteria. Nature, 466, 77-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Taghbalout, A. and Rothfield, L. (2007) RNaseE and the Other Constituents of the RNA Degradosome Are Components of the Bacterial Cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 104, 1667-1672. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Autret, S. and Errington, J. (2003) A Role for Division-Site-Selection Protein MinD in Regulation of Internucleoid Jumping of Soj (ParA) Protein in Bacillus subtilis. Molecular Microbiology, 47, 159-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Kloosterman, T.G., Lenarcic, R., Willis, C.R., Roberts, D.M., Hamoen, L.W., Errington, J. and Wu, L.J. (2016) Complex Polar Machinery Required for Proper Chromosome Segregation in Vegetative and Sporulating Cells of Bacillus subtilis. Molecular Microbiology, 101, 333-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Butland, G., Peregrin-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., Davey, M., Parkinson, J., Greenblatt, J. and Emili, A. (2005) Interaction Network Containing Conserved and Essential Protein Complexes in Escherichia coli. Nature, 433, 531-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Tan, D., Wu, Q., Chen, J.C. and Chen, G.Q. (2014) Engineering Halomonas TD01 for the Low-Cost Production of Polyhydroxyalkanoates. Metabolic Engineering, 26, 34-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Ma, Y., Zheng, X., Lin, Y., Zhang, L., Yuan, Y., Wang, H., Winterburn, J., Wu, F., Wu, Q., Ye, J.W. and Chen, G.Q. (2022) Engineering an Oleic Acid-Induced System for Halomonas, E. coli and Pseudomonas. Metabolic Engineering, 72, 325-336. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Wu, H., Chen, J. and Chen, G.Q. (2016) Engineering the Growth Pattern and Cell Morphology for Enhanced PHB Production by Escherichia coli. Applied Microbiology and Biotechnology, 100, 9907-9916. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Fu, C., Guan, G. and Wang, H. (2018) The Anticancer Effect of Sanguinarine: A Review. Current Pharmaceutical Design, 24, 2760-2764. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Beuria, T.K., Santra, M.K. and Panda, D. (2005) Sanguinarine Blocks Cytokinesis in Bacteria by Inhibiting FtsZ Assembly and Bundling. Biochemistry, 44, 16584-16593. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Liu, J., Ma, R., Bi, F., Zhang, F., Hu, C., Venter, H., Semple, S.J. and Ma, S. (2018) Novel 5-Methyl-2-Phenylphe- nanthridium Derivatives as FtsZ-Targeting Antibacterial Agents from Structural Simplification of Natural Product Sanguinarine. Bioorganic and Medicinal Chemistry Letters, 28, 1825-1831. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Domadia, P.N., Bhunia, A., Sivaraman, J., Swarup, S. and Dasgupta, D. (2008) Berberine Targets Assembly of Escherichia coli Cell Division Protein FtsZ. Biochemistry, 47, 3225-3234. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Sun, N., Chan, F.Y., Lu, Y.J., Neves, M.A., Lui, H.K., Wang, Y., Chow, K.Y., Chan, K.F., Yan, S.C., Leung, Y.C., Abagyan, R., Chan, T.H. and Wong, K.Y. (2014) Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity. PLOS ONE, 9, E97514. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Ohashi, Y., Chijiiwa, Y., Suzuki, K., Takahashi, K., Nanamiya, H., Sato, T., Hosoyo, Y., Ochi, K. and Kawamura, F. (1999) The Lethal Effect of A Benzamide Derivative, 3-Methoxybenzamide, Can Be Suppressed by Mutations within a Cell Division Gene, FtsZ, in Bacillus subtilis. Journal of Bacteriology, 181, 1348-1351. [Google Scholar] [CrossRef]
|
|
[76]
|
Beuria, T.K., Singh, P., Surolia, A. and Panda, D. (2009) Promoting Assembly and Bundling of FtsZ as a Strategy to Inhibit Bacterial Cell Division: A New Approach for Developing Novel Antibacterial Drugs. The Biochemical Journal, 423, 61-69. [Google Scholar] [CrossRef]
|
|
[77]
|
Hu, S., Wang, X., Sun, W., Wang, L. and Li, W. (2021) In Vitro Study of Biocontrol Potential of Rhizospheric Pseudomonas aeruginosa against Pathogenic Fungi of Saffron (Crocus sativus L.). Pathogens, 10, Article No. 1423. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Chaudhary, R., Kota, S. and Misra, H.S. (2021) DivIVA Regulates Its Expression and the Orientation of New Septum Growth in Deinococcus radiodurans. Journal of Bacteriology, 203, E0016321. [Google Scholar] [CrossRef]
|
|
[79]
|
Liu, J., Xing, W.Y., Liu, B. and Zhang, C.C. (2022) Three-Dimensional Coordination of Cell-Division Site Positioning in a Filamentous Cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America Nexus, 2, Pgac307. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Glock, P., Broichhagen, J., Kretschmer, S., Blumhardt, P., Muchsch, J., Trauner, D. and Schwille, P. (2018) Optical Control of a Biological Reaction-Diffusion System. Angewandte Chemie International Edition, 57, 2362-2366. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Shih, Y.L., Huang, L.T., Tu, Y.M., Lee, B.F., Bau, Y.C., Hong, C.Y., Lee, H.L.H., Shih, Y.P., Hsu, M.F., Chen, J.S., Lu, Z.X. and Chao, L. (2019) Active Transport of Membrane Components by Dynamic Min Protein Waves. Biophysical Journal, 116, 1469-1482. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Litschel, T., Ramm, B., Maas, R., Heymann, M. and Schwille, P. (2018) Beating Vesicles: Encapsulated Protein Oscillations Cause Dynamic Membrane Deformations. Angewandte Chemie International Edition, 57, 16286-16290. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Kohyama, S., Merino-Salomon, A. and Schwille, P. (2022) In Vitro Assembly, Positioning and Contraction of a Division Ring in Minimal Cells. Nature Communications, 13, Article No. 6098. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Farley, M., Hu, B., Margolin, W. and Liu, J. (2016) Minicells, Back in Fashion. Journal of Bacteriology, 198, 1186-1195. [Google Scholar] [CrossRef]
|
|
[85]
|
Carleton, H.A., Lara-Tejero, M., Liu, X. and Galan, J.E. (2013) Engineering the Type III Secretion System in Non-Replicating Bacterial Minicells for Antigen Delivery. Nature Communications, 4, Article No. 1590. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Ramm, B., Heermann, T. and Schwille, P. (2019) The E. coli MinCDE System in the Regulation of Protein Patterns and Gradients Cellular and Molecular Life Sciences. CMLS, 76, 4245-4273. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Merino-Salomon, A., Babl, L. and Schwille, P. (2021) Self-Organized Protein Patterns: The MinCDE and ParABS Systems. Current Opinion in Cell Biology, 72, 106-115. [Google Scholar] [CrossRef] [PubMed]
|