[1]
|
Tabares-Guevara, J.H., Villa-Pulgarin, J.A. and Hernandez, J.C. (2021) Atherosclerosis: Immunopathogenesis and Strategies for Immunotherapy. Immunotherapy, 13, 1231-1244. https://doi.org/10.2217/imt-2021-0009
|
[2]
|
Hansson, G.K. and Hermansson, A. (2011) The Immune System in Atherosclerosis. Nature Immunology, 12, 204-212. https://doi.org/10.1038/ni.2001
|
[3]
|
Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533. https://doi.org/10.1038/s41586-021-03392-8
|
[4]
|
Poznyak, A.V., Bharadwaj, D., Prasad, G., Grechko, A.V., Sazonova, M.A. and Orekhov, A.N. (2021) Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. International Journal of Molecular Sciences, 22, Article 6702. https://doi.org/10.3390/ijms22136702
|
[5]
|
Qiao, L., Ma, J., Zhang, Z., Sui, W., Zhai, C., Xu, D., Wang, Z., Lu, H., Zhang, M., Zhang, C., Chen, W. and Zhang, Y. (2021) Deficient Chaperone-Mediated Autophagy Promotes Inflammation and Atherosclerosis. Circulation Research, 129, 1141-1157. https://doi.org/10.1161/CIRCRESAHA.121.318908
|
[6]
|
Jia, M., Li, Q., Guo, J., Shi, W., Zhu, L., Huang, Y., Li, Y., Wang, L., Ma, S., Zhuang, T., Wang, X., Pan, Q., Wei, X., Qin, Y., Li, X., Jin, J., Zhi, X., Tang, J., Jing, Q., Li, S., Jiang, L., Qu, L., Osto, E., Zhang, J., Wang, X., Yu, B. and Meng, D. (2022) Deletion of BACH1 Attenuates Atherosclerosis by Reducing Endothelial Inflammation. Circulation Research, 130, 1038-1055. https://doi.org/10.1161/CIRCRESAHA.121.319540
|
[7]
|
Liu, W., Östberg, N., Yalcinkaya, M., Dou, H., Endo-Umeda, K., Tang, Y., Hou, X., Xiao, T., Fidler, T.P., Abramowicz, S., Yang, Y.G., Soehnlein, O., Tall, A.R. and Wang, N. (2022) Erythroid Lineage Jak2V617F Expression Promotes Atherosclerosis through Erythrophagocytosis and Macrophage Ferroptosis. The Journal of Clinical Investigation, 132, e155724.
|
[8]
|
Lin, L., Zhang, M.X., Zhang, L., Zhang, D., Li, C. and Li, Y.L. (2021) Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Frontiers in Cell and Developmental Biology, 9, Article 809955. https://doi.org/10.3389/fcell.2021.809955
|
[9]
|
Poznyak, A.V., Nikiforov, N.G., Wu, W.K., Kirichenko, T.V. and Orekhov, A.N. (2021) Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells, 10, Article 443. https://doi.org/10.3390/cells10020443
|
[10]
|
Fredman, G. and MacNamara, K.C. (2021) Atherosclerosis Is a Major Human Killer and Non-Resolving Inflammation Is a Prime Suspect. Cardiovascular Research, 117, 2563-2574. https://doi.org/10.1093/cvr/cvab309
|
[11]
|
Kong, P., Cui, Z.Y., Huang, X.F., Zhang, D.D., Guo, R.J. and Han, M. (2022) Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduction and Targeted Therapy, 7, Article No. 131. https://doi.org/10.1038/s41392-022-00955-7
|
[12]
|
Fang, X., Ardehali, H., Min, J. and Wang, F. (2023) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23. https://doi.org/10.1038/s41569-022-00735-4
|
[13]
|
Li, M., Xin, S., Gu, R., Zheng, L., Hu, J., Zhang, R. and Dong, H. (2022) Novel Diagnostic Biomarkers Related to Oxidative Stress and Macrophage Ferroptosis in Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8917947. https://doi.org/10.1155/2022/8917947
|
[14]
|
Zhou, Y., Zhou, H., Hua, L., Hou, C., Jia, Q., Chen, J., Zhang, S., Wang, Y., He, S. and Jia, E. (2021) Verification of Ferroptosis and Pyroptosis and Identification of PTGS2 as the Hub Gene in Human Coronary Artery Atherosclerosis. Free Radical Biology & Medicine, 171, 55-68. https://doi.org/10.1016/j.freeradbiomed.2021.05.009
|
[15]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[16]
|
Zhang, Y., Xin, L., Xiang, M., Shang, C., Wang, Y., Wang, Y., Cui, X. and Lu, Y. (2022) The Molecular Mechanisms of Ferroptosis and Its Role in Cardiovascular Disease. Biomedicine & Pharmacotherapy, 145, Article 112423. https://doi.org/10.1016/j.biopha.2021.112423
|
[17]
|
Ouyang, S., You, J., Zhi, C., Li, P., Lin, X., Tan, X., Ma, W., Li, L. and Xie, W. (2021) Ferroptosis: The Potential Value Target in Atherosclerosis. Cell Death & Disease, 12, Article No. 782. https://doi.org/10.1038/s41419-021-04054-3
|
[18]
|
Chen, Y., Yi, X., Huo, B., He, Y., Guo, X., Zhang, Z., Zhong, X., Feng, X., Fang, Z.M., Zhu, X.H., Wei, X. and Jiang, D.S. (2022) BRD4770 Functions as a Novel Ferroptosis Inhibitor to Protect Against Aortic Dissection. Pharmacological Research, 177, Article 106122. https://doi.org/10.1016/j.phrs.2022.106122
|
[19]
|
Wei, L., Wang, N., Li, R., Zhao, H., Zheng, X., Deng, Z., Sun, Z. and Xing, Z. (2022) Integrated Bioinformatics-Based Identification of Ferroptosis-Related Genes in Carotid Atherosclerosis. Disease Markers, 2022, Article ID: 3379883. https://doi.org/10.1155/2022/3379883
|
[20]
|
Wu, D., Hu, Q., Wang, Y., Jin, M., Tao, Z. and Wan, J. (2022) Identification of HMOX1 as a Critical Ferroptosis-Related Gene in Atherosclerosis. Frontiers in Cardiovascular Medicine, 9, Article 833642. https://doi.org/10.3389/fcvm.2022.833642
|
[21]
|
Meng, Q., Xu, Y., Ling, X., Liu, H., Ding, S., Wu, H., Yan, D., Fang, X., Li, T. and Liu, Q. (2022) Role of Ferroptosis-Related Genes in Coronary Atherosclerosis and Identification of Key Genes: Integration of Bioinformatics Analysis and Experimental Validation. BMC Cardiovascular Disorders, 22, Article No. 339. https://doi.org/10.1186/s12872-022-02747-x
|
[22]
|
Marques, V.B., Leal, M.A.S., Mageski, J.G.A., Fidelis, H.G., Nogueira, B.V., Vasquez, E.C., Meyrelles, S.D.S., Simões, M.R. and Dos Santos, L. (2019) Chronic Iron Overload Intensifies Atherosclerosis in Apolipoprotein E Deficient Mice: Role of Oxidative Stress and Endothelial Dysfunction. Life Sciences, 233, Article 116702. https://doi.org/10.1016/j.lfs.2019.116702
|
[23]
|
Sampilvanjil, A., Karasawa, T., Yamada, N., Komada, T., Higashi, T., Baatarjav, C., Watanabe, S., Kamata, R., Ohno, N. and Takahashi, M. (2020) Cigarette Smoke Extract Induces Ferroptosis in Vascular Smooth Muscle Cells. American Journal of Physiology: Heart and Circulatory Physiology, 318, H508-H518. https://doi.org/10.1152/ajpheart.00559.2019
|
[24]
|
Tabas, I., Williams, K.J. and Borén, J. (2007) Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis: Update and Therapeutic Implications. Circulation, 116, 1832-1844. https://doi.org/10.1161/CIRCULATIONAHA.106.676890
|
[25]
|
Xu, S., Pelisek, J. and Jin, Z.G. (2018) Atherosclerosis Is an Epigenetic Disease. Trends in Endocrinology and Metabolism, 29, 739-742. https://doi.org/10.1016/j.tem.2018.04.007
|
[26]
|
Rader, D.J. and Daugherty, A. (2008) Translating Molecular Discoveries into New Therapies for Atherosclerosis. Nature, 451, 904-913. https://doi.org/10.1038/nature06796
|
[27]
|
Bäck, M., Yurdagul, A., Tabas, I., Öörni, K. and Kovanen, P.T. (2019) Inflammation and Its Resolution in Atherosclerosis: Mediators and Therapeutic Opportunities. Nature Reviews Cardiology, 16, 389-406. https://doi.org/10.1038/s41569-019-0169-2
|
[28]
|
Wolf, D. and Ley, K. (2019) Immunity and Inflammation in Atherosclerosis. Circulation Research, 124, 315-327. https://doi.org/10.1161/CIRCRESAHA.118.313591
|
[29]
|
Canfrán-Duque, A., Rotllan, N., Zhang, X., Andrés-Blasco, I., Thompson, B.M., Sun, J., Price, N.L., Fernández-Fuertes, M., Fowler, J.W., Gómez-Coronado, D., Sessa, W.C., Giannarelli, C., Schneider, R.J., Tellides, G., McDonald, J.G., Fernández-Hernando, C. and Suárez, Y. (2023) Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling. Circulation, 147, 388-408. https://doi.org/10.1161/CIRCULATIONAHA.122.059062
|
[30]
|
Galaris, D., Barbouti, A. and Pantopoulos, K. (2019) Iron Homeostasis and Oxidative Stress: An Intimate Relationship. Biochimica et Biophysica Acta-Molecular Cell Research, 1866, Article 118535. https://doi.org/10.1016/j.bbamcr.2019.118535
|
[31]
|
Weiland, A., Wang, Y., Wu, W., Lan, X., Han, X., Li, Q. and Wang, J. (2019) Ferroptosis and Its Role in Diverse Brain Diseases. Molecular Neurobiology, 56, 4880-4893. https://doi.org/10.1007/s12035-018-1403-3
|
[32]
|
Liu, J., Kuang, F., Kroemer, G., Klionsky, D.J., Kang, R. and Tang, D. (2020) Autophagy-Dependent Ferroptosis: Machinery and Regulation. Cell Chemical Biology, 27, 420-435. https://doi.org/10.1016/j.chembiol.2020.02.005
|
[33]
|
Panda, S.K., Peng, V., Sudan, R., Ulezko Antonova, A., Di Luccia, B., Ohara, T.E., Fachi, J.L., Grajales-Reyes, G.E., Jaeger, N., Trsan, T., Gilfillan, S., Cella, M. and Colonna, M. (2023) Repression of the Aryl-Hydrocarbon Receptor Prevents Oxidative Stress and Ferroptosis of Intestinal Intraepithelial Lymphocytes. Immunity, 56, 797-812. https://doi.org/10.1016/j.immuni.2023.01.023
|
[34]
|
Li, J., Jia, B., Cheng, Y., Song, Y., Li, Q. and Luo, C. (2022) Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3999083. https://doi.org/10.1155/2022/3999083
|
[35]
|
Li, J., Cao, F., Yin, H.L., Huang, Z.J., Lin, Z.T., Mao, N., Sun, B. and Wang, G. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Aticle No. 88. https://doi.org/10.1038/s41419-020-2298-2
|
[36]
|
Wang, X., Chen, X., Zhou, W., Men, H., Bao, T., Sun, Y., Wang, Q., Tan, Y., Keller, B.B., Tong, Q., Zheng, Y. and Cai, L. (2022) Ferroptosis Is Essential for Diabetic Cardiomyopathy and Is Prevented by Sulforaphane via AMPK/NRF2 Pathways. Acta Pharmaceutica Sinica B, 12, 708-722. https://doi.org/10.1016/j.apsb.2021.10.005
|
[37]
|
Batty, M., Bennett, M.R. and Yu, E. (2022) The Role of Oxidative Stress in Atherosclerosis. Cells, 11, Article 3843. https://doi.org/10.3390/cells11233843
|
[38]
|
Marchio, P., Guerra-Ojeda, S., Vila, J.M., Aldasoro, M., Victor, V.M. and Mauricio, M.D. (2019) Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 8563845. https://doi.org/10.1155/2019/8563845
|
[39]
|
Park, M.W., Cha, H.W., Kim, J., Kim, J.H., Yang, H., Yoon, S., Boonpraman, N., Yi, S.S., Yoo, I.D. and Moon, J.S. (2021) NOX4 Promotes Ferroptosis of Astrocytes by Oxidative Stress-Induced Lipid Peroxidation via the Impairment of Mitochondrial Metabolism in Alzheimer’s Diseases. Redox Biology, 41, Article 101947. https://doi.org/10.1016/j.redox.2021.101947
|
[40]
|
Bedard, K. and Krause, K.H. (2007) The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiological Reviews, 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
|
[41]
|
Zeeshan, H.M., Lee, G.H., Kim, H.R. and Chae, H.J. (2016) Endoplasmic Reticulum Stress and Associated ROS. International Journal of Molecular Sciences, 17, Article 327. https://doi.org/10.3390/ijms17030327
|
[42]
|
Vermot, A., Petit-Härtlein, I., Smith, S.M.E. and Fieschi, F. (2021) NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants, 10, Article 890. https://doi.org/10.3390/antiox10060890
|
[43]
|
Jiang, J., Huang, K., Xu, S., Garcia, J.G.N., Wang, C. and Cai, H. (2020) Targeting NOX4 Alleviates Sepsis-Induced Acute Lung Injury via Attenuation of Redox-Sensitive Activation of CaMKII/ERK1/2/MLCK and Endothelial Cell Barrier Dysfunction. Redox Biology, 36, Article 101638. https://doi.org/10.1016/j.redox.2020.101638
|
[44]
|
Yu, W., Li, S., Wu, H., Hu, P., Chen, L., Zeng, C. and Tong, X. (2021) Endothelial Nox4 Dysfunction Aggravates Atherosclerosis by Inducing Endoplasmic Reticulum Stress and Soluble Epoxide Hydrolase. Free Radical Biology & Medicine, 164, 44-57. https://doi.org/10.1016/j.freeradbiomed.2020.12.450
|
[45]
|
Wang, W., Wu, Q.H., Sui, Y., Wang, Y. and Qiu, X. (2017) Rutin Protects Endothelial Dysfunction by Disturbing Nox4 and ROS-Sensitive NLRP3 Inflammasome. Biomedicine & Pharmacotherapy, 86, 32-40. https://doi.org/10.1016/j.biopha.2016.11.134
|
[46]
|
Gimbrone, M.A. and García-Cardeña, G. (2016) Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Research, 118, 620-636. https://doi.org/10.1161/CIRCRESAHA.115.306301
|
[47]
|
Stary, H.C. (2000) Natural History and Histological Classification of Atherosclerotic Lesions: An Update. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1177-1178. https://doi.org/10.1161/01.ATV.20.5.1177
|
[48]
|
Virmani, R., Kolodgie, F.D., Burke, A.P., Farb, A. and Schwartz, S.M. (2000) Lessons from Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1262-1275. https://doi.org/10.1161/01.ATV.20.5.1262
|
[49]
|
Simionescu, N., Vasile, E., Lupu, F., Popescu, G. and Simionescu, M. (1986) Prelesional Events in Atherogenesis. Accumulation of Extracellular Cholesterol-Rich Liposomes in the Arterial Intima and Cardiac Valves of the Hyperlipidemic Rabbit. The American Journal of Pathology, 123, 109-125.
|
[50]
|
Ross, R. and Glomset, J.A. (1973) Atherosclerosis and the Arterial Smooth Muscle Cell: Proliferation of Smooth Muscle Is a Key Event in the Genesis of the Lesions of Atherosclerosis. Science, 180, 1332-1339. https://doi.org/10.1126/science.180.4093.1332
|
[51]
|
Ross, R. and Glomset, J.A. (1976) The Pathogenesis of Atherosclerosis (First of Two Parts). The New England Journal of Medicine, 295, 369-377. https://doi.org/10.1056/NEJM197608122950707
|
[52]
|
Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s. Nature, 362, 801-809. https://doi.org/10.1038/362801a0
|
[53]
|
Bedard, K., Lardy, B. and Krause, K.H. (2007) NOX Family NADPH Oxidases: Not Just in Mammals. Biochimie, 89, 1107-1112. https://doi.org/10.1016/j.biochi.2007.01.012
|
[54]
|
Hu, P., Wu, X., Khandelwal, A.R., Yu, W., Xu, Z., Chen, L., Yang, J., Weisbrod, R.M., Lee, K.S.S., Seta, F., Hammock, B.D., Cohen, R.A., Zeng, C. and Tong, X. (2017) Endothelial Nox4-Based NADPH Oxidase Regulates Atherosclerosis via Soluble Epoxide Hydrolase. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1863, 1382-1391. https://doi.org/10.1016/j.bbadis.2017.02.004
|
[55]
|
Di Marco, E., Gray, S.P., Kennedy, K., Szyndralewiez, C., Lyle, A.N., Lassègue, B., Griendling, K.K., Cooper, M.E., Schmidt, H. and Jandeleit-Dahm, K.A.M. (2016) NOX4-Derived Reactive Oxygen Species Limit Fibrosis and Inhibit Proliferation of Vascular Smooth Muscle Cells in Diabetic Atherosclerosis. Free Radical Biology & Medicine, 97, 556-567. https://doi.org/10.1016/j.freeradbiomed.2016.07.013
|
[56]
|
Salazar, G. (2018) NADPH Oxidases and Mitochondria in Vascular Senescence. International Journal of Molecular Sciences, 19, Article 1327. https://doi.org/10.3390/ijms19051327
|
[57]
|
Ayer, A., Zarjou, A., Agarwal, A. and Stocker, R. (2016) Heme Oxygenases in Cardiovascular Health and Disease. Physiological Reviews, 96, 1449-1508. https://doi.org/10.1152/physrev.00003.2016
|
[58]
|
Wang, Z., Li, W., Wang, X., Zhu, Q., Liu, L., Qiu, S., Zou, L., Liu, K., Li, G., Miao, H., Yang, Y., Jiang, C., Liu, Y., Shao, R., Wang, X. and Liu, Y. (2023) Isoliquiritigenin Induces HMOX1 and GPX4-Mediated Ferroptosis in Gallbladder Cancer Cells. Chinese Medical Journal, 136, 2210-2220. https://doi.org/10.1097/CM9.0000000000002675
|
[59]
|
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., Cheng, Q., Zhang, P., Dai, W., Chen, J., Yang, F., Yang, H.T., Linkermann, A., Gu, W., Min, J. and Wang, F. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680. https://doi.org/10.1073/pnas.1821022116
|
[60]
|
Meng, Z., Liang, H., Zhao, J., Gao, J., Liu, C., Ma, X., Liu, J., Liang, B., Jiao, X., Cao, J. and Wang, Y. (2021) HMOX1 Upregulation Promotes Ferroptosis in Diabetic Atherosclerosis. Life Sciences, 284, Article 119935. https://doi.org/10.1016/j.lfs.2021.119935
|
[61]
|
Yang, C., Wang, T., Zhao, Y., Meng, X., Ding, W., Wang, Q., Liu, C. and Deng, H. (2022) Flavonoid 4,4’-Dimethoxychalcone Induced Ferroptosis in Cancer Cells by Synergistically Activating Keap1/Nrf2/HMOX1 Pathway and Inhibiting FECH. Free Radical Biology & Medicine, 188, 14-23. https://doi.org/10.1016/j.freeradbiomed.2022.06.010
|
[62]
|
Zheng, C., Zhang, B., Li, Y., Liu, K., Wei, W., Liang, S., Guo, H., Ma, K., Liu, Y., Wang, J. and Liu, L. (2023) Donafenib and GSK-J4 Synergistically Induce Ferroptosis in Liver Cancer by Upregulating HMOX1 Expression. Advanced Science, 10, e2206798. https://doi.org/10.1002/advs.202206798
|