[1]
|
彭涛. 内燃机活塞材料的发展与前景[J]. 山西科技, 2007(3): 91-92, 103.
|
[2]
|
隋育栋, 王渠东. 铸造耐热铝合金在发动机上的应用研究与发展[J]. 材料导报, 2015, 29(3): 14-19.
|
[3]
|
水有富, 刘金祥, 黄渭清, 等. 发动机气缸盖用铸造Al-Si合金腐蚀动力学研究[J/OL]. 机械工程学报: 1-10. http://kns.cnki.net/kcms/detail/11.2187.TH.20231005.1817.004.html, 2024-04-24.
|
[4]
|
熊俊杰, 李尹, 冯志军, 等. Al-Si系铸造合金热处理工艺研究进展[J]. 铸造, 2022, 71(5): 544-550.
|
[5]
|
杨浩, 王方军, 刘海定, 等. Al、Si元素含量对高温低膨胀合金组织及性能的影响[J]. 功能材料, 2023, 54(12): 12199-12205.
|
[6]
|
隋育栋. Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究[D]: [博士学位论文]. 上海: 上海交通大学, 2020.
|
[7]
|
Pei-Rong, R., Wei, S., Gu, Z., et al. (2021) High-Cycle Fatigue Failure Analysis of Cast Al-Si Alloy Engine Cylinder Head. Engineering Failure Analysis, 127, Article ID: 105546. https://doi.org/10.1016/j.engfailanal.2021.105546
|
[8]
|
胡惠翔, 樊振中, 罗婷瑞, 等. Al-Si-Mg系铸造合金应用现状与高强韧制备研究进展[J]. 铸造, 2023, 72(10): 1227-1234.
|
[9]
|
Jiao, X., Wang, P., Liu, Y., et al. (2024) The Characterization of Porosity and Externally Solidified Crystals in a High Pressure Die Casting Hypoeutectic Al-Si Alloy Using a Newly Developed Ceramic Shot Sleeve. Materials Letters, 360, Article ID: 136045. https://doi.org/10.1016/j.matlet.2024.136045
|
[10]
|
晁延吉. Fe、Ni元素对Al-Si合金微观组织与高温性能的影响[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2022. https://doi.org/10.27278/d.cnki.gsdqc.2022.000338
|
[11]
|
姚杰, 刘永跃, 郭剑, 等. 合金化对Al-Si压铸铝合金的组织与性能影响的研究[J]. 热加工工艺, 2019, 48(8): 46-50.
|
[12]
|
Jiao, X.Y., Wang, P.Y., et al. (2024) The Characterization of Porosity and Externally Solidified Crystals in a High Pressure Die Casting Hypoeutectic Al-Si Alloy Using a Newly Developed Ceramic Shot Sleeve. Materials Letters, 360, Article ID: 136045. https://doi.org/10.1016/j.matlet.2024.136045
|
[13]
|
Farkoosh, A.R., Javidani, M., Hoseini, M., Larouche, D. and Pekguleryuz, M. (2013) Phase Formation in as-Solidified and Heat-Treated Al-Si-Cu-Mg-Nialloys: Thermodynamic Assessment and Experimental Investigation for Alloy Design. Journal of Alloys & Compounds, 551, 596-606. https://doi.org/10.1016/j.jallcom.2012.10.182
|
[14]
|
Stadler, F., Antrekowitsch, H., Fragner, W., et al. (2011) The Effect of Ni on the High-Temperature Strength of Al-Si Cast Alloys. Materials Science Forum, 1311, 274-277. https://doi.org/10.4028/www.scientific.net/MSF.690.274
|
[15]
|
Pan, S.H., Yuan, J., Jin, K.Y., et al. (2022) Influence of Mg on Reaction and Properties of Al-Si/TiC Nanocomposites. Materials Science and Engineering: A, 840, Article ID: 142992. https://doi.org/10.1016/j.msea.2022.142992
|
[16]
|
Wang, S. and Yang, C. (2011) Effect of RE on As-Cast Ageing Process of Al-Si Alloys. World Journal of Engineering, 8, 255-258. https://doi.org/10.1260/1708-5284.8.3.255
|
[17]
|
Morinaka, M. (2002) Effect of Fe, Sr and Ca on Shrinkage Characteristics in Al-Si Alloy. Journal of Japan Foundry Engineering Society, 74, 103-108.
|
[18]
|
杨阳, 李云国, 刘相法. 富铁Al-Si活塞合金中富镍相的演变[J]. 材料热处理学报, 2011, 32(z1): 86-89.
|
[19]
|
陈今龙, 叶兵, 蒋海燕, 等. Ni对Al-Si-Cu-Ni-Mg过共晶活塞合金组织和力学性能的影响[J]. 热加工工艺, 2021, 50(4): 32-37.
|
[20]
|
廖恒成, 胡以云, 何志成, 唐云逸, 李广敬. 锰含量对近共晶铝硅铜锰合金组织与耐热性的影响[J]. 铸造技术, 2017, 38(11): 2586-2590.
|
[21]
|
陆从相, 杨彦, 周鹏飞. Mn/Fe对Al-Si-Mg-Fe合金组织和性能的影响[J]. 铸造, 2021, 70(4): 454-459.
|
[22]
|
李润霞, 于洪江, 袁晓光, 黄宏军, 陈玉金. Cr和Mo对过共晶Al-Si合金组织与性能的影响[J]. 铸造, 2009, 58(8): 839-842.
|
[23]
|
杨阳. Al-Si多元合金中耐热相演变行为与协同强化机制的研究[D]: [博士学位论文]. 济南: 山东大学, 2013.
|
[24]
|
张启运, 郑朝贵, 韩万书. 稀土元素对Al-Si共晶合金的变质作用[J]. 金属学报, 1981(2): 130-136, 240-241.
|
[25]
|
陈玉勇, 贾均, 李战江, 等. 稀土对铝硅合金处理效果的研究[J]. 中国稀土学报, 1989(3): 41-46.
|
[26]
|
孙芳芳. Sc、Zr微合金化对Al-Cu-Mg合金组织与性能的影响[D]: [硕士学位论文]. 天津: 天津大学, 2017.
|
[27]
|
杨玉莹. 合金元素和热处理工艺对Al-Si共晶合金高温力学性能的影响[D]: [硕士学位论文]. 上海: 上海交通大学, 2016.
|
[28]
|
陈媛媛, 王社则, 田博彤. 稀土Er对汽车轮毂用A356合金组织与力学性能的影响[J]. 金属热处理, 2019, 44(11): 39-44.
|
[29]
|
刘取. 新型发动机缸体用耐热铝合金的合金化和微合金化[D]: [硕士学位论文]. 南京: 东南大学, 2017.
|
[30]
|
陈继飞, 杨军军. 稀土La对Al-Si合金的变质作用机理研究[J]. 铸造技术, 2008, 29(5): 658-661.
|
[31]
|
李峰诚, 翟鹏远, 吴玉广, 等. Al-Cu铸造铝合金热处理工艺研究现状及应对策略[J]. 新技术新工艺, 2023, 426(6): 1-5.
|
[32]
|
程翔翔, 陈家浩, 陶思节, 等. Al-Cu合金中微合金化的应用及其研究进展[J]. 现代交通与冶金材料, 2022, 2(6): 81-89.
|
[33]
|
张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271.
|
[34]
|
陈金龙. 新型耐热铝合金成分设计及组织性能研究[D]: [博士学位论文]. 南京: 东南大学, 2020.
|
[35]
|
付俊伟, 崔凯, 王江春. Al-Cu系耐热铝合金的研究进展[J]. 中国有色金属学报, 2021, 31(7): 1827-1841.
|
[36]
|
王雨辰, 黄焰, 陈凯伦, 等. 耐热Al-Cu合金θ’强化相热稳定性改性研究进展[J]. 信息记录材料, 2022, 23(4): 37-39.
|
[37]
|
张华炜. Al-Cu-Ni铸造耐热铝合金设计、制备及性能研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2021.
|
[38]
|
Wahid, A.S., Seong, H.H., Ali, J.S., et al. (2023) Investigating the Influence of Mg Content Variations on Microstructures, Heat-Treatment, and Mechanical Properties of Al-Cu-Mg Alloys. Materials, 16, Article 4384. https://doi.org/10.3390/ma16124384
|
[39]
|
Samuel, F.H., Samuel, A.M. and Liu, H. (1995) Effect of Magnesium Content on the Ageing Behaviour of Water-Chilled Al-Si-Cu-Mg-Fe-Mn (380) Alloy Castings. Journal of Materials Science, 30, 2531-2540. https://doi.org/10.1007/BF00362130
|
[40]
|
陈丽芳, 凌凯, 莫文锋. Cu含量对2040铝合金力学性能和耐腐蚀性能的影响[J]. 兵器材料科学与工程, 2023, 46(5):112-118.
|
[41]
|
Yang, S.L., Zhao, X.J., Chen, H.W., Wilson, N. and Nie, J.F. (2022) Atomic Structure and Evolution of a Precursor Phase of Ω Precipitate in an Al-Cu-Mg-Ag Alloy. Acta Materialia, 225, Article ID: 117538. https://doi.org/10.1016/j.actamat.2021.117538
|
[42]
|
刘来梅, 王杰芳, 郭巧能, 等. Zr、Sc对Al-Cu-Mg-Ag-Ti合金耐蚀性能的影响[J]. 特种铸造及有色合金, 2018, 38(7): 779-783.
|
[43]
|
杜传航. SiCW/Al-Cu-Mg-Ag复合材料耐热性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2022.
|
[44]
|
龙达. 纳米结构Al-Cu-Mn合金组织性能及热稳定性研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2022.
|
[45]
|
胡以云. 新型发动机缸体用耐热铝硅铜锰合金的研制[D]: [硕士学位论文]. 南京: 东南大学, 2016.
|
[46]
|
McAlister, A.J. and Murray, J.L. (1987) The (Al-Mn) Aluminum-Manganese System. Journal of Phase Equilibria, 8, 438-447. https://doi.org/10.1007/BF02893153
|
[47]
|
钟立伟, 王健, 丁西西, 等. Sc在Al-Cu合金中的作用研究进展[J]. 稀有金属与硬质合金, 2022, 50(1): 52-56.
|
[48]
|
岳春雨, 黄宏军, 左晓姣, 王宇翔, 陶承闯, 苏明, 袁晓光. 稀土Pr、Sm、Y对Al-Cu合金组织的影响[J]. 特种铸造及有色合金, 2022, 42(6): 712-716.
|
[49]
|
余鑫祥, 余志明, 尹登峰, 王华, 何岸青, 崔凡. 稀土Ce对新型Al-Cu-Li合金力学性能与组织的影响[J]. 稀有金属材料与工程, 2014, 43(2): 495-500.
|
[50]
|
张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 149-157.
|
[51]
|
Jiang, L., Zhang, Z., Bai, Y., et al. (2022) Study on Sc Microalloying and Strengthening Mechanism of Al-Mg Alloy. Crystals, 12, Article 673. https://doi.org/10.3390/cryst12050673
|
[52]
|
Wu, H., Zheng, Z.K., Ren, S.M., et al. (2021) Effects of Er and Zr Micro-Additions on Recrystallization Behavior and Welding Properties of Al-Mg Alloy. Nonferrous Metals Society of China, 31, 289-297.
|
[53]
|
Li, X., Xia, W., Yan, H., et al. (2020) Improving Strength and Corrosion Resistance of High Mg Alloyed Al-Mg-Mn Alloys through Ce Addition. Corrosion Engineering, Science and Technology, 55, 381-391. https://doi.org/10.1080/1478422X.2020.1735716
|
[54]
|
刘博. 稀土Er对Al-Mg合金组织和性能的影响研究[J]. 功能材料, 2022, 53(1): 1020-1024.
|
[55]
|
Li, X., Xia, W., Yan, H., et al. (2020) Enhancing the Intergranular Corrosion Resistance of High Mg-Alloyed Al-Mg Alloy by Y Addition. Materials and Corrosion, 71, 1802-1811. https://doi.org/10.1002/maco.202011722
|
[56]
|
程天一, 章守华. 快速凝固技术与新型合金[J]. 宇航材料工艺, 1987(5): 3-11, 39.
|
[57]
|
陈桂云, 谢赞华, 藏志新, 张永昌. 快速凝固粉末冶金Al-Si-Cu-Mg合金的组织和性能[J]. 粉末冶金技术, 1994(1): 3-7.
|
[58]
|
Lee, H., Lim, C., Low, M.J., et al. (2017) Lasers in Additive Manufacturing: A Review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 307-322. https://doi.org/10.1007/s40684-017-0037-7
|
[59]
|
Schmidtke, K., Palm, F., Hawkins, A. and Emmelmann, C. (2011) Process and Mechanical Properties: Applicability of a Scandium Modified Al-Alloy for Laser Additive Manufacturing. Physics Procedia, 12, 369-374. https://doi.org/10.1016/j.phpro.2011.03.047
|
[60]
|
Bartkowiak, K., Ullrich, S., Frick, T. and Schmidt, M. (2011) New Developments of Laser Processing Aluminium Alloys via Additive Manufacturing Technique. Physics Procedia, 12, 393-401. https://doi.org/10.1016/j.phpro.2011.03.050
|