|
[1]
|
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI. The Journal of Neuroscience, 27, 3743-3752.[CrossRef]
|
|
[2]
|
Beatty, P. J., Buzzell, G. A., Roberts, D. M., & McDonald, C. G. (2018). Speeded Response Errors and the Error-Related Negativity Modulate Early Sensory Processing. Neuroimage, 183, 112-120.[CrossRef] [PubMed]
|
|
[3]
|
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict Monitoring and Cognitive Control. Psychological review, 108, 624-652.[CrossRef]
|
|
[4]
|
Butler, P. D., Schechter, I., Zemon, V., Schwartz, S. G., Greenstein, V. C., Gordon, J., Javitt, D. C. et al. (2001). Dysfunction of Early-Stage Visual Processing in Schizophrenia. American Journal of Psychiatry, 158, 1126-1133.[CrossRef] [PubMed]
|
|
[5]
|
Butler, P. D., Zemon, V., Schechter, I., Saperstein, A. M., Hoptman, M. J., Lim, K. O., Javitt, D. C. et al. (2005). Early-Stage Visual Processing and Cortical Amplification Deficits in Schizophrenia. Archives of general psychiatry, 62, 495-504.[CrossRef] [PubMed]
|
|
[6]
|
Buzzell, G. A., Beatty, P. J., Paquette, N. A., Roberts, D. M., & McDonald, C. G. (2017). Error-Induced Blindness: Error Detection Leads to Impaired Sensory Processing and Lower Accuracy at Short Response-Stimulus Intervals. Journal of Neuroscience, 37, 2895-2903.[CrossRef]
|
|
[7]
|
Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & Frank, M. J. (2011). Subthalamic Nucleus Stimulation Reverses Mediofrontal Influence over Decision Threshold. Nature Neuroscience, 14, 1462-1467.[CrossRef] [PubMed]
|
|
[8]
|
Chevrier, A., & Schachar, R. J. (2010). Error Detection in the Stop Signal Task. Neuroimage, 53, 664-673.[CrossRef] [PubMed]
|
|
[9]
|
Coles, M. G., Scheffers, M. K., & Holroyd, C. B. (2001). Why Is There an ERN/Ne on Correct Trials? Response Representations, Stimulus-Related Components, and the Theory of Error-Processing. Biological Psychology, 56, 173-189.[CrossRef]
|
|
[10]
|
Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M., & Ullsperger, M. (2011). Posterior Medial Frontal Cortex Activity Predicts Post-Error Adaptations in Task-Related Visual and Motor Areas. Journal of Neuroscience, 31, 1780-1789.[CrossRef]
|
|
[11]
|
Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-Trial Coupling of Concurrent Electroencephalogram and Functional Magnetic Resonance Imaging Identifies the Dynamics of Performance Monitoring. Journal of Neuroscience, 25, 11730-11737.[CrossRef]
|
|
[12]
|
Dutilh, G., Vandekerckhove, J., Forstmann, B. U., Keuleers, E., Brysbaert, M., & Wagenmakers, E. J. (2011). Testing Theories of Post-Error Slowing. Attention, Perception, & Psychophysics, 74, 454-465.[CrossRef] [PubMed]
|
|
[13]
|
Folstein, J. R., & Van Petten, C. (2007). Influence of Cognitive Control and Mismatch on the N2 Component of the ERP: A Review. Psychophysiology, 45, 152-170.[CrossRef] [PubMed]
|
|
[14]
|
Frank, M. J. (2006). Hold Your Horses: A Dynamic Computational Role for the Subthalamic Nucleus in Decision Making. Neural Networks, 19, 1120-1136.[CrossRef] [PubMed]
|
|
[15]
|
Garavan, H. et al. (2002). Dissociable Executive Functions in the Dynamic Control of Behavior: Inhibition, Error Detection, and Correction. Neuroimage, 17, 1820-1829.[CrossRef] [PubMed]
|
|
[16]
|
Gehring, W. J., & Fencsik, D. E. (2001). Functions of the Medial Frontal Cortex in the Processing of Conflict and Errors. Journal of Neuroscience, 21, 9430-9437.[CrossRef]
|
|
[17]
|
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (2016). A Neural System for Error Detection and Compensation. Psychological Science, 4, 385-390.[CrossRef]
|
|
[18]
|
Gjorgieva, E., & Egner, T. (2022). Learning from Mistakes: Incidental Encoding Reveals a Time-Dependent Enhancement of Posterror Target Processing. Journal of Experimental Psychology: General, 151, 718-730.[CrossRef] [PubMed]
|
|
[19]
|
Haenschel, C., Bittner, R. A., Haertling, F., Rotarska-Jagiela, A., Maurer, K., Singer, W., & Linden, D. E. (2007). Contribution of Impaired Early-Stage Visual Processing to Working Memory Dysfunction in Adolescents with Schizophrenia: A Study with Event-Related Potentials and Functional Magnetic Resonance Imaging. Archives of General Psychiatry, 64, 1229-1240.[CrossRef] [PubMed]
|
|
[20]
|
Hajcak, G., McDonald, N., & Simons, R. F. (2003). To Err Is Autonomic: Error-Related Brain Potentials, ANS Activity, and Post-Error Compensatory Behavior. Psychophysiology, 40, 895-903.[CrossRef] [PubMed]
|
|
[21]
|
Hanks, T., Kiani, R., & Shadlen, M. N. (2014). A Neural Mechanism of Speed-Accuracy Tradeoff in Macaque Area LIP. eLife, 3, e02260.[CrossRef]
|
|
[22]
|
Heitz, R. P., & Schall, J. D. (2012). Neural Mechanisms of Speed-Accuracy Tradeoff. Neuron, 76, 616-628.[CrossRef] [PubMed]
|
|
[23]
|
Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory Gain Control (Amplification) as a Mechanism of Selective Attention: Electrophysiological and Neuroimaging Evidence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 1257-1270.[CrossRef] [PubMed]
|
|
[24]
|
Hu, N., Long, Q., Wang, X. et al. (2023). Neural and Behavioral Measures of Stress-induced Impairment in Error Awareness and Post-Error Adjustment. Neuroscience Bulletin.[CrossRef] [PubMed]
|
|
[25]
|
Jentzsch, I., & Dudschig, C. (2009). Short Article: Why Do We Slow Down after an Error? Mechanisms Underlying the Effects of Posterror Slowing. Quarterly Journal of Experimental Psychology, 62, 209-218.[CrossRef] [PubMed]
|
|
[26]
|
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior Cingulate Conflict Monitoring and Adjustments in Control. Science, 303, 1023-1026.[CrossRef] [PubMed]
|
|
[27]
|
King, J. A., Korb, F. M., von Cramon, D. Y., & Ullsperger, M. (2010). Post-Error Behavioral Adjustments Are Facilitated by Activation and Suppression of Task-Relevant and Task-Irrelevant Information Processing. Journal of Neuroscience, 30, 12759-12769.[CrossRef]
|
|
[28]
|
Klein, T. A., Endrass, T., Kathmann, N., Neumann, J., von Cramon, D. Y., & Ullsperger, M. (2007). Neural Correlates of Error Awareness. Neuroimage, 34, 1774-1781.[CrossRef] [PubMed]
|
|
[29]
|
Laming, D. R. J. (1968). Information Theory of Choice-Reaction Times. Academic Press.
|
|
[30]
|
Li, Q., Hu, N., Li, Y., Long, Q., Gu, Y., Tang, Y., & Chen, A. (2021). Error-Induced Adaptability: Behavioral and Neural Dynamics of Response-Stimulus Interval Modulations on Posterror Slowing. Journal of Experimental Psychology: General, 150, 851-863.[CrossRef] [PubMed]
|
|
[31]
|
Li, Q., Long, Q., Hu, N., Tang, Y., & Chen, A. (2020). N-Back Task Training Helps to Improve Post-error Performance. Frontiers in Psychology, 11, Article 370.[CrossRef] [PubMed]
|
|
[32]
|
Li, Q., Wang, J., Li, Z., & Chen, A. (2022). Decoding the Specificity of Post-Error Adjustments Using EEG-Based Multivariate Pattern Analysis. The Journal of Neuroscience, 42, 6800-6809.[CrossRef]
|
|
[33]
|
Marco-Pallarés, J., Camara, E., Münte, T. F., & Rodríguez-Fornells, A. (2008). Neural Mechanisms Underlying Adaptive Actions after Slips. Journal of Cognitive Neuroscience, 20, 1595-1610.[CrossRef] [PubMed]
|
|
[34]
|
Miller, E. K. (2000). The Prefontral Cortex and Cognitive Control. Nature Reviews Neuroscience, 1, 59-65.[CrossRef] [PubMed]
|
|
[35]
|
Miller, E. K., & Cohen, J. D. (2001). An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 24, 167-202.[CrossRef] [PubMed]
|
|
[36]
|
Nambu, A., Tokuno, H., & Takada, M. (2002). Functional Significance of the Cortico-Subthalamo-Pallidal ‘Hyperdirect’ Pathway. Neuroscience Research, 43, 111-117.[CrossRef]
|
|
[37]
|
Nash, K., Leota, J., Kleinert, T., & Hayward, D. A. (2023). Anxiety Disrupts Performance Monitoring: Integrating Behavioral, Event-Related Potential, EEG Microstate, and sLORETA Evidence. Cerebral Cortex, 33, 3787-3802.[CrossRef] [PubMed]
|
|
[38]
|
Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A. (2001). Error-Related Brain Potentials Are Differentially Related to Awareness of Response Errors: Evidence from an Antisaccade Task. Psychophysiology, 38, 752-760.[CrossRef] [PubMed]
|
|
[39]
|
Notebaert, W., Houtman, F., Opstal, F. V., Gevers, W., Fias, W., & Verguts, T. (2009). Post-Error Slowing: An Orienting Account. Cognition, 111, 275-279.[CrossRef] [PubMed]
|
|
[40]
|
Polich, J. (2007). Updating P300: An Integrative Theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148.[CrossRef] [PubMed]
|
|
[41]
|
Purcell, B. A., & Kiani, R. (2016). Neural Mechanisms of Post-Error Adjustments of Decision Policy in Parietal Cortex. Neuron, 89, 658-671.[CrossRef] [PubMed]
|
|
[42]
|
Rabbitt, P. M. (1966). Errors and Error Correction in Choice-Response Tasks. Journal of Experimental Psychology, 71, 264-272.[CrossRef] [PubMed]
|
|
[43]
|
Ridderinkhof, K. R. (2002). Activation and Suppression in Conflict Tasks: Empirical Clarification through Distributional Analyses. In W. Prinz, & B. Hommel (Eds.), Common Mechanisms in Perception and Action: Attention and Performance XIX (pp. 494-519). Oxford Academic Press.[CrossRef]
|
|
[44]
|
Ridderinkhof, K. R., Span, M. M., & van der Molen, M. W. (2002). Perseverative Behavior and Adaptive Control in Older Adults: Performance Monitoring, Rule Induction, and Set Shifting. Brain and Cognition, 49, 382-401.[CrossRef] [PubMed]
|
|
[45]
|
Ridderinkhof, K. R., van den Wildenberg, W. P., Wijnen, J., & Burle, B. (2004). Response Inhibition in Conflict Tasks Is Revealed in Delta Plots. In M. I. Posner (Ed.), Cognitive Neuroscience of Attention (pp. 369-377). The Guilford Press.
|
|
[46]
|
Schechter, I., Butler, P. D., Zemon, V. M., Revheim, N., Saperstein, A. M., Jalbrzikowski, M., Javitt, D. C. et al. (2005). Impairments in Generation of Early-Stage Transient Visual Evoked Potentials to Magno-and Parvocellular-Selective Stimuli in Schizophrenia. Clinical Neurophysiology, 116, 2204-2215.[CrossRef] [PubMed]
|
|
[47]
|
Swann, N., Tandon, N., Canolty, R., Ellmore, T. M., McEvoy, L. K., Dreyer, S., Aron, A. R. et al. (2009). Intracranial EEG Reveals a Time-and Frequency-Specific Role for the Right Inferior Frontal Gyrus and Primary Motor Cortex in Stopping Initiated Responses. The Journal of Neuroscience, 29, 12675-12685.[CrossRef]
|
|
[48]
|
Ullsperger, M., & Danielmeier, C. (2016). Reducing Speed and Sight: How Adaptive Is Post-Error Slowing? Neuron, 89, 430-432.[CrossRef] [PubMed]
|
|
[49]
|
van Veen, V., Holroyd, C. B., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2004). Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex. Brain and Cognition, 56, 267-276.[CrossRef] [PubMed]
|
|
[50]
|
Wessel, J. R. (2018). An Adaptive Orienting Theory of Error Processing. Psychophysiology, 55, e13041.[CrossRef] [PubMed]
|
|
[51]
|
Wessel, J. R., & Ullsperger, M. (2011). Selection of Independent Components Representing Event-Related Brain Potentials: A Data-Driven Approach for Greater Objectivity. Neuroimage, 54, 2105-2115.[CrossRef] [PubMed]
|
|
[52]
|
Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and Error: Common Neuronal Architecture for the Processing of Errors and Novelty. Journal of Neuroscience, 32, 7528-7537.[CrossRef]
|
|
[53]
|
Wessel, J. R., Jiang, J., & Stolley, J. J. (2022). Action Errors Impair Active Working Memory Maintenance. Journal of Experimental Psychology: General, 151, 1325-1340.[CrossRef] [PubMed]
|
|
[54]
|
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity. Psychological Review, 111, 931-959.[CrossRef]
|