|
[1]
|
Min, H.-Y. and Lee, H.-Y. (2022) Molecular Targeted Therapy for Anticancer Treatment. Experimental & Molecular Medicine, 54, 1670-1694. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ke, X. and Shen, L. (2017) Molecular Targeted Therapy of Cancer: The Progress and Future Prospect. Frontiers in Laboratory Medicine, 1, 69-75. [Google Scholar] [CrossRef]
|
|
[3]
|
Gajewski, T.F., Schreiber, H. and Fu, Y.X. (2013) Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nature Immunology, 14, 1014-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cheng, Y.Q., Wang, S.B., Liu, J.H., et al. (2020) Modifying the Tumour Microenvironment and Reverting Tumour Cells: New Strategies for Treating Malignant Tumours. Cell Proliferation, 53, e12865. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jin, Y., Huang, Y., Ren, H., et al. (2024) Nano-Enhanced Immunotherapy: Targeting the Immunosuppressive Tumor Microenvironment. Biomaterials, 305, Article 122463. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Komohara, Y., Fujiwara, Y., Ohnishi, K., et al. (2016) Tumor-Associated Macrophages: Potential Therapeutic Targets for Anti-Cancer Therapy. Advanced Drug Delivery Reviews, 99, 180-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bingle, L., Brown, N.J. and Lewis, C.E. (2002) The Role of Tumour-Associated Macrophages in Tumour Progression: Implications for New Anticancer Therapies. The Journal of Pathology, 196, 254-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Guerriero, J.L. (2018) Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends in Molecular Medicine, 24, 472-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mantovani, A., Marchesi, F., Malesci, A., et al. (2017) Tumour-Associated Macrophages as Treatment Targets in Oncology. Nature Reviews Clinical Oncology, 14, 399-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mantovani, A., Allavena, P., Marchesi, F., et al. (2022) Macrophages as Tools and Targets in Cancer Therapy. Nature Reviews Drug Discovery, 21, 799-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhu, Y., Herndon, J.M., Sojka, D.K., et al. (2017) Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 47, 323-338.E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Müller, A., Brandenburg, S., Turkowski, K., et al. (2015) Resident Microglia, and not Peripheral Macrophages, Are the Main Source of Brain Tumor Mononuclear Cells. International Journal of Cancer, 137, 278-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mantovani, A., Marchesi, F., Jaillon, S., et al. (2021) Tumor-Associated Myeloid Cells: Diversity and Therapeutic Targeting. Cellular & Molecular Immunology, 18, 566-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zuo, S., Song, J., Zhang, J., et al. (2021) Nano-Immunotherapy for Each Stage of Cancer Cellular Immunity: Which, Why, and What? Theranostics, 11, 7471-7487. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Guevara, M.L., Persano, F. and Persano, S. (2021) Nano-Immunotherapy: Overcoming Tumour Immune Evasion. Seminars in Cancer Biology, 69, 238-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kiaie, S.H., Salehi-Shadkami, H., Sanaei, M.J., et al. (2023) Nano-Immunotherapy: Overcoming Delivery Challenge of Immune Checkpoint Therapy. Journal of Nanobiotechnology, 21, Article No. 339. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lahooti, B., Akwii, R.G., Zahra, F.T., et al. (2023) Targeting Endothelial Permeability in the EPR Effect. Journal of Controlled Release, 361, 212-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Denardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews Immunology, 19, 369-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Coussens, L.M., Zitvogel, L. and Palucka, A.K. (2013) Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet? Science, 339, 286-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Moisan, F., Francisco, E.B., Brozovic, A., et al. (2014) Enhancement of Paclitaxel and Carboplatin Therapies by CCL2 Blockade in Ovarian Cancers. Molecular Oncology, 8, 1231-1239. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, X., Yao, W., Yuan, Y., et al. (2017) Targeting of Tumour-Infiltrating Macrophages via CCL2/CCR2 Signalling as a Therapeutic Strategy against Hepatocellular Carcinoma. Gut, 66, 157-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yoshimura, T., Li, C., Wang, Y., et al. (2023) The Chemokine Monocyte Chemoattractant Protein-1/CCL2 Is a Promoter of Breast Cancer Metastasis. Cellular & Molecular Immunology, 20, 714-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Shen, S., Zhang, Y., Chen, K.G., et al. (2018) Cationic Polymeric Nanoparticle Delivering CCR2 siRNA to Inflammatory Monocytes for Tumor Microenvironment Modification and Cancer Therapy. Molecular Pharmaceutics, 15, 3642-3653. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Möckel, D., Bartneck, M., Niemietz, P., et al. (2024) CCL2 Chemokine Inhibition Primes the Tumor Vasculature for Improved Nanomedicine Delivery and Efficacy. Journal of Controlled Release, 365, 358-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Guo, F., Wang, Y., Liu, J., et al. (2016) CXCL12/CXCR4: A Symbiotic Bridge Linking Cancer Cells and Their Stromal Neighbors in Oncogenic Communication Networks. Oncogene, 35, 816-826. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, X., Bu, W., Meng, L., et al. (2019) CXCL12/CXCR4 Pathway Orchestrates CSC-Like Properties by CAF Recruited Tumor Associated Macrophage in OSCC. Experimental Cell Research, 378, 131-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zannettino, A.C., Farrugia, A.N., Kortesidis, A., et al. (2005) Elevated Serum Levels of Stromal-Derived Factor-1α Are Associated with Increased Osteoclast Activity and Osteolytic Bone Disease in Multiple Myeloma Patients. Cancer Research, 65, 1700-1709. [Google Scholar] [CrossRef]
|
|
[31]
|
Beider, K., Bitner, H., Leiba, M., et al. (2014) Multiple Myeloma Cells Recruit Tumor-Supportive Macrophages through the CXCR4/CXCL12 Axis and Promote Their Polarization toward the M2 Phenotype. Oncotarget, 5, 11283-11296. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ishida, Y., Kuninaka, Y., Yamamoto, Y., et al. (2020) Pivotal Involvement of the CX3CL1-CX3CR1 Axis for the Recruitment of M2 Tumor-Associated Macrophages in Skin Carcinogenesis. The Journal of Investigative Dermatology, 140, 1951-1961.E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jung, K., Heishi, T., Khan, O.F., et al. (2017) Ly6Clo Monocytes Drive Immunosuppression and Confer Resistance to Anti-VEGFR2 Cancer Therapy. The Journal of Clinical Investigation, 127, 3039-3051. [Google Scholar] [CrossRef]
|
|
[34]
|
Zhu, R., Su, L., Dai, J., et al. (2020) Biologically Responsive Plasmonic Assemblies for Second Near-Infrared Window Photoacoustic Imaging-Guided Concurrent Chemo-Immunotherapy. ACS Nano, 14, 3991-4006. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, F., Dong, J., Huang, K., et al. (2023) “Dominolike” Barriers Elimination with an Intratumoral Adenosine-Triphosphate-Supersensitive Nanogel to Enhance Cancer Chemoimmunotherapy. ACS Nano, 17, 18805-18817. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
D’incalci, M. and Galmarini, C.M. (2010) A Review of Trabectedin (ET-743): A Unique Mechanism of Action. Molecular Cancer Therapeutics, 9, 2157-2163. [Google Scholar] [CrossRef]
|
|
[37]
|
Germano, G., Frapolli, R., Belgiovine, C., et al. (2013) Role of Macrophage Targeting in the Antitumor Activity of Trabectedin. Cancer Cell, 23, 249-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Choi, T.H., Yoo, R.J., Park, J.Y., et al. (2024) Development of Finely Tuned Liposome Nanoplatform for Macrophage Depletion. Journal of Nanobiotechnology, 22, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Farzin, A., Etesami, S.A., Quint, J., et al. (2020) Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Advanced Healthcare Materials, 9, e1901058. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zanganeh, S., Hutter, G., et al. (2016) Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nature Nanotechnology, 11, 986-994. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yu, G.-T., Rao, L., Wu, H., et al. (2018) Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 28, Article 1801389. [Google Scholar] [CrossRef]
|
|
[42]
|
Shime, H., Matsumoto, M., Oshiumi, H., et al. (2012) Toll-Like Receptor 3 Signaling Converts Tumor-Supporting Myeloid Cells to Tumoricidal Effectors. Proceedings of the National Academy of Sciences of the United States of America, 109, 2066-2071. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Huang, L., Xu, R., Li, W., et al. (2023) Repolarization of Macrophages to Improve Sorafenib Sensitivity for Combination Cancer Therapy. Acta Biomaterialia, 162, 98-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Cao, S., Saw, P.E., Shen, Q., et al. (2022) Reduction-Responsive RNAi Nanoplatform to Reprogram Tumor Lipid Metabolism and Repolarize Macrophage for Combination Pancreatic Cancer Therapy. Biomaterials, 280, Article 121264. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Iwasaki, A. and Medzhitov, R. (2010) Regulation of Adaptive Immunity by the Innate Immune System. Science, 327, 291-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Demaria, O., Cornen, S., Daëron, M., et al. (2019) Harnessing Innate Immunity in Cancer Therapy. Nature, 574, 45-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Tajbakhsh, A., Gheibi Hayat, S.M., Movahedpour, A., et al. (2021) The Complex Roles of Efferocytosis in Cancer Development, Metastasis, and Treatment. Biomedicine & Pharmacotherapy, 140, Article 111776. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Logtenberg, M.E.W., Scheeren, F.A. and Schumacher, T.N. (2020) The CD47-SIRPα Immune Checkpoint. Immunity, 52, 742-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hayat, S.M.G., Bianconi, V., Pirro, M., et al. (2020) CD47: Role in the Immune System and Application to Cancer Therapy. Cellular Oncology, 43, 19-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Liu, Y., Wang, Y., Yang, Y., et al. (2023) Emerging Phagocytosis Checkpoints in Cancer Immunotherapy. Signal Transduction and Targeted Therapy, 8, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Shi, M., Gu, Y., Jin, K., et al. (2021) CD47 Expression in Gastric Cancer Clinical Correlates and Association with Macrophage Infiltration. Cancer Immunology, Immunotherapy, 70, 1831-1840. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Yu, L., Ding, Y., Wan, T., et al. (2021) Significance of CD47 and Its Association with Tumor Immune Microenvironment Heterogeneity in Ovarian Cancer. Frontiers in Immunology, 12, Article 768115. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hsieh, R.C., Krishnan, S., Wu, R.C., et al. (2022) ATR-Mediated CD47 and PD-L1 Up-Regulation Restricts Radiotherapy-Induced Immune Priming and Abscopal Responses in Colorectal Cancer. Science Immunology, 7, eabl9330.
|
|
[54]
|
Xu, X., Li, S., Yu, W., et al. (2024) Activation of RIG-I/MDA5 Signaling and Inhibition of CD47-SIRPα Checkpoint with a Dual siRNA-Assembled Nanoadjuvant for Robust Cancer Immunotherapy. Angewandte Chemie International Edition, 63, e202318544. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wang, S., Jiao, W., Yan, B., et al. (2024) Intracellular Magnetic Hyperthermia Enables Concurrent Down-Regulation of CD47 and SIRPα To Potentiate Antitumor Immunity. Nano Letters, 24, 2894-2903. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Yoo, J.W., Irvine, D.J., Discher, D.E., et al. (2011) Bio-Inspired, Bioengineered and Biomimetic Drug Delivery Carriers. Nature Reviews Drug Discovery, 10, 521-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kitada, T., Diandreth, B., Teague, B., et al. (2018) Programming Gene and Engineered-Cell Therapies with Synthetic Biology. Science, 359, eaad1067. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Kerzel, T., Giacca, G., Beretta, S., et al. (2023) In Vivo Macrophage Engineering Reshapes the Tumor Microenvironment Leading to Eradication of Liver Metastases. Cancer Cell, 41, 1892-1910.E10. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Hayden, P.J., Roddie, C., Bader, P., et al. (2022) Management of Adults and Children Receiving CAR T-Cell Therapy: 2021 Best Practice Recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Annals of Oncology, 33, 259-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Larson, R.C. and Maus, M.V. (2021) Recent Advances and Discoveries in the Mechanisms and Functions of CAR T Cells. Nature Reviews Cancer, 21, 145-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Lei, A., Yu, H., Lu, S., et al. (2024) A Second-Generation M1-Polarized CAR Macrophage with Antitumor Efficacy. Nature Immunology, 25, 102-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Nguyen, V.D., Min, H.K., Kim, D.H., et al. (2020) Macrophage-Mediated Delivery of Multifunctional Nanotherapeutics for Synergistic Chemo-Photothermal Therapy of Solid Tumors. ACS Applied Materials & Interfaces, 12, 10130-10141. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Alizadeh, D., Zhang, L., Hwang, J., et al. (2010) Tumor-Associated Macrophages Are Predominant Carriers of Cyclodextrin-Based Nanoparticles into Gliomas. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 382-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Pang, L., Zhu, Y., Qin, J., et al. (2018) Primary M1 Macrophages as Multifunctional Carrier Combined with PLGA Nanoparticle Delivering Anticancer Drug for Efficient Glioma Therapy. Drug Delivery, 25, 1922-1931. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Li, J., Wu, Y., Wang, J., et al. (2023) Macrophage Membrane-Coated Nano-Gemcitabine Promotes Lymphocyte Infiltration and Synergizes AntiPD-L1 to Restore the Tumoricidal Function. ACS Nano, 17, 322-336. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Chen, S., Ma, T., Wang, J., et al. (2024) Macrophage-Derived Biomimetic Nanoparticles Enhanced SDT Combined with Immunotherapy Inhibited Tumor Growth and Metastasis. Biomaterials, 305, Article 122456. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Kalluri, R. and Lebleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Wang, P., Wang, H., Huang, Q., et al. (2019) Exosomes from M1-Polarized Macrophages Enhance Paclitaxel Antitumor Activity by Activating Macrophages-Mediated Inflammation. Theranostics, 9, 1714-1727. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Lu, Y., Han, G., Zhang, Y., et al. (2023) M2 Macrophage-Secreted Exosomes Promote Metastasis and Increase Vascular Permeability in Hepatocellular Carcinoma. Cell Communication and Signaling, 21, Article No. 299. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Xiong, F., Ling, X., Chen, X., et al. (2019) Pursuing Specific Chemotherapy of Orthotopic Breast Cancer with Lung Metastasis from Docking Nanoparticles Driven by Bioinspired Exosomes. Nano Letters, 19, 3256-3266. [Google Scholar] [CrossRef] [PubMed]
|