|
[1]
|
Khan, K., Tareen, A.K., Aslam, M., et al. (2020) Recent Developments in Emerging Two-Dimensional Materials and Their Applications. Journal of Materials Chemistry C, 8, 387-440. [Google Scholar] [CrossRef]
|
|
[2]
|
Miro, P., Audiffred, M. and Heine, T. (2014) An Atlas of Two-Dimensional Materials. Chemical Society Reviews, 43, 6537-6554. [Google Scholar] [CrossRef]
|
|
[3]
|
Jin, Z., Hu, C., Lan, Y., et al. (2020) Epitaxial Growth of PbS Nanocrystals from PbI2 Nanosheet Templates and Its Application in Fast Near-Infrared Photodetectors. Advanced Optical Materials, 8, Article 2001319. [Google Scholar] [CrossRef]
|
|
[4]
|
Xia, F., Wang, H., Xiao, D., et al. (2014) Two-Dimensional Material Nanophotonics. Nature Photonics, 8, 899-907. [Google Scholar] [CrossRef]
|
|
[5]
|
Yoo, C., Ko, T.-J., Kaium, M.G., et al. (2022) A Minireview on 2D Materials-Enabled Optoelectronic Artificial Synaptic Devices. APL Materials, 10, Article 070702. [Google Scholar] [CrossRef]
|
|
[6]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Liu, L., Zhang, J., Gao, H., et al. (2016) Tailoring Physical Properties of Graphene: Effects of Hydrogenation, Oxidation, and Grain Boundaries by Atomistic Simulations. Computational Materials Science, 112, 527-546. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, C.-C., Feng, W. and Yao, Y. (2011) Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Physical Review Letters, 107, Article 076802. [Google Scholar] [CrossRef]
|
|
[9]
|
Wei, W., Dai, Y., Huang, B., et al. (2013) Many-Body Effects in Silicene, Silicane, Germanene and Germanane. Physical Chemistry Chemical Physics, 15, 8789-8794. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ozcelik, V.O., Durgun, E. and Ciraci, S. (2014) New Phases of Germanene. Journal of Physical Chemistry Letters, 5, 2694-2699. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, X. and Lan, S. (2016) Optical Properties of Black Phosphorus. Advances in Optics and Photonics, 8, 618-655. [Google Scholar] [CrossRef]
|
|
[12]
|
Xia, F., Wang, H., Hwang, J.C.M., et al. (2019) Black Phosphorus and Its Isoelectronic Materials. Nature Reviews Physics, 1, 306-317. [Google Scholar] [CrossRef]
|
|
[13]
|
Eswaraiah, V., Zeng, Q., Long, Y., et al. (2016) Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small, 12, 3480-3502. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sahin, H., Cahangirov, S., Topsakal, M., et al. (2009) Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations. Physical Review B, 80, Article 155453. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhang, L., Gu, J. and Chen, Z. (2021) Structures and Functions of Two-Dimensional Materials: From Theoretical Prediction to Experimental Realization. Chinese Science Bulletin-Chinese, 66, 563-579. [Google Scholar] [CrossRef]
|
|
[16]
|
Vu, Q.A. and Yu, W.J. (2018) Electronics and Optoelectronics Based on Two-Dimensional Materials. Journal of the Korean Physical Society, 73, 1-15. [Google Scholar] [CrossRef]
|
|
[17]
|
Huang, H.H., Fan, X., Singh, D.J., et al. (2020) Recent Progress of TMD Nanomaterials: Phase Transitions and Applications. Nanoscale, 12, 1247-1268. [Google Scholar] [CrossRef]
|
|
[18]
|
Prabhu, P., Jose, V. and Lee, J.-M. (2020) Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2, 526-553. [Google Scholar] [CrossRef]
|
|
[19]
|
Mohebpour, M.A., Mozvashi, S.M., Vishkayi, S.I., et al. (2020) Prediction of Hydrogenated Group IV-V Hexagonal Binary Monolayers. Scientific Reports, 10, Article No. 14963. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, N., Bo, G., Liu, Y., et al. (2019) Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small, 15, Article 1805147. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liang, M., Han, C., Zheliuk, O., et al. (2021) A Flip-Over Plasmonic Structure for Photoluminescence Enhancement of Encapsulated WS2 Monolayers. Advanced Optical Materials, 9, Article 2100397. [Google Scholar] [CrossRef]
|
|
[22]
|
Berashevich, J. and Chakraborty, T. (2009) Tunable Band Gap and Magnetic Ordering by Adsorption of Molecules on Graphene. Physical Review B, 80, Article 033404. [Google Scholar] [CrossRef]
|
|
[23]
|
Wu, E., Wu, D., Jia, C., et al. (2019) In Situ Fabrication of 2D WS2/Si Type-II Heterojunction for Self-Powered Broadband Photodetector with Response Up to Mid-Infrared. ACS Photonics, 6, 565-572. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhuo, Q., Liu, X., Ou, J., et al. (2022) Theoretical Study on S/Fe-Doped Hexagonal Boron Nitride (h-BN) Sheet: Electronic and Optical Properties. Applied Surface Science, 598, Article 153719. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, Y., Wang, L., Zhang, X., et al. (2021) Two-Dimensional Nanomaterials with Engineered Bandgap: Synthesis, Properties, Applications. Nano Today, 37, Article 101059. [Google Scholar] [CrossRef]
|
|
[26]
|
Bai, Y., Zhang, Q., Xu, N., et al. (2018) Efficient Carrier Separation and Band Structure Tuning of Two-Dimensional C2N/GaTe van der Waals Heterostructure. Journal of Physical Chemistry C, 122, 15892-15902. [Google Scholar] [CrossRef]
|
|
[27]
|
Yang, S., Chen, Y. and Jiang, C. (2021) Strain Engineering of Two-Dimensional Materials: Methods, Properties, and Applications. Infomat, 3, 397-420. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhao, H., Xie, F., Liu, Y., et al. (2021) Van der Waals heterostructures of Janus XSeTe (X=Mo, W) and Arsenene Monolayers: A First Principles Study. Materials Science in Semiconductor Processing, 123, Article 105588. [Google Scholar] [CrossRef]
|
|
[29]
|
Li, X., Cao, H., Guo, Y., et al. (2020) Effect of Interface Distance on the Electronic Properties and Optical Properties of GaAs/BN Novel Two-Dimensional Materials: First-Principle Calculation. Materials Chemistry and Physics, 242, Article 122554. [Google Scholar] [CrossRef]
|
|
[30]
|
Guan, Y., Li, X., Hu, T., et al. (2021) Tunable Electronic Properties of SnS2/WSe2 Hetero-Structure: A First Principle Study. Superlattices and Microstructures, 150, Article 106806. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhang, R., Li, M., Li, L., et al. (2021) The More, the Better-Recent Advances in Construction of 2D Multi-Heterostructures. Advanced Functional Materials, 31, Article 2102049. [Google Scholar] [CrossRef]
|
|
[32]
|
Yang, C.-H. and Chang, S.-T. (2022) First-Principles Study of the Optical Properties of TMDC/Graphene Heterostructures. Photonics, 9, Article 387. [Google Scholar] [CrossRef]
|
|
[33]
|
Ren, D., Li, Y. and Xiong, W. (2021) Vertically Stacked GaN/WX2 (X=S, Se, Te) Heterostructures for Photocatalysts and Photoelectronic Devices. RSC Advances, 11, 35954-35959. [Google Scholar] [CrossRef]
|
|
[34]
|
Glukhova, O.E., Slepchenkov, M.M., Kolosov, D.A., et al. (2020) Vertical Heterostructures Based Monolayers of Dielectric and Semiconductor Graphene-Like 2D Materials: Atomic Structure, Energy Stability and Electronic Properties. Proceedings of the Saratov Fall Meeting (SFM) on Laser Physics, Photonic Technologies, and Molecular Modeling, Saratov, 23-27 September 2020, 114580Z. [Google Scholar] [CrossRef]
|
|
[35]
|
Feng, W., Wen, X., Wang, Y., et al. (2023) Interfacial Coupling SnSe2/SnSe Heterostructures as Long Cyclic Anodes of Lithium-Ion Battery. Advanced Science, 10, Article 2204671. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Torres-Rojas, R.M., Contreras-Solorio, D.A., Hernandez, L., et al. (2022) Band Gap Variation in Bi, Tri and Few-Layered 2D Graphene/hBN Heterostructures. Solid State Communications, 341, Article 114553. [Google Scholar] [CrossRef]
|
|
[37]
|
Jariwala, D., Marks, T.J. and Hersam, M.C. (2017) Mixed-Dimensional van der Waals Heterostructures. Nature Materials, 16, 170-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tan, C. and Zhang, H. (2015) Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 137, 12162-12174. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lau, S.P., Li, L.-J. and Chai, Y. (2017) Advances in Two-Dimensional Layered Materials. Advanced Functional Materials, 27, Article 1701403. [Google Scholar] [CrossRef]
|
|
[40]
|
He, X., Tang, A., Li, Y., et al. (2021) Theoretical Studies of SiC van der Waals Heterostructures as Anodes of Li-Ion Batteries. Applied Surface Science, 563, Article 150269. [Google Scholar] [CrossRef]
|
|
[41]
|
Zhang, J.-X. and Zhao, Z.-Y. (2023) Comparative Analysis of the Interfacial Structure and Properties of BiOX/BiOY (X, Y=F, Cl, Br, and I) Heterostructures through DFT Calculations. Inorganic Chemistry, 62, 8397-8406. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ren, K., Sun, M., Luo, Y., et al. (2019) First-Principle Study of Electronic and Optical Properties of Two-Dimensional Materials-Based Heterostructures Based on Transition Metal Dichalcogenides and Boron Phosphide. Applied Surface Science, 476, 70-75. [Google Scholar] [CrossRef]
|
|
[43]
|
Huang, C., Wu, S., Sanchez, A.M., et al. (2014) Lateral Heterojunctions within Monolayer MoSe2-WSe2 Semiconductors. Nature Materials, 13, 1096-1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Britnell, L., Ribeiro, R.M., Eckmann, A., et al. (2013) Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science, 340, 1311-1314. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xing, Z., Xiaozong, H., Jing, Y., et al. (2023) 2D Layered Material-Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 33, Article 2302474. [Google Scholar] [CrossRef]
|
|
[46]
|
Ozcelik, V.O., Azadani, J.G., Yang, C., et al. (2016) Band Alignment of Two-Dimensional Semiconductors for Designing Heterostructures with Momentum Space Matching. Physical Review B, 94, Article 035125. [Google Scholar] [CrossRef]
|
|
[47]
|
Islam, M.R., Islam, M.S., Zamil, M.Y., et al. (2023) Two-Dimensional BAs/GeC van der Waals Heterostructures: A Widely Tunable Photocatalyst for Water Splitting and Hydrogen Production. Journal of Physics and Chemistry of Solids, 176, Article 111263. [Google Scholar] [CrossRef]
|
|
[48]
|
Tan, X., Xu, B., Jiang, Y., et al. (2022) Robust Type-I Band Alignment in ZnS Nanowire/MoTe2 Nanotube van der Waals Heterostructures. Chemical Physics Letters, 791, Article 139370. [Google Scholar] [CrossRef]
|
|
[49]
|
Ye, H., Sheng, H., Bai, D., et al. (2020) Strain and Electric Field Tuned Electronic Properties of BAs/MoSe2 van der Waals Heterostructures for Alternative Electrodes and Photovoltaic Cell in Photocatalysis. Physica E-Low-Dimensional Systems & Nanostructures, 120, Article 114055. [Google Scholar] [CrossRef]
|
|
[50]
|
Zribi, J., Khalil, L., Zheng, B., et al. (2019) Strong Interlayer Hybridization in the Aligned SnS2/WSe2 Hetero-Bilayer Structure. NPJ 2D Materials and Applications, 3, Article No. 27. [Google Scholar] [CrossRef]
|
|
[51]
|
Shi, J., Ou, Y., Mighorato, M.A., et al. (2019) Tuning the Electronic Structure of GeC/WS2 van der Waals Heterostructure by Electric Field and Strain: A First Principles Study. Computational Materials Science, 160, 301-308. [Google Scholar] [CrossRef]
|
|
[52]
|
Wang, Z., Wei, X., Huang, Y., et al. (2023) High Solar-to-Hydrogen Efficiency in AsP/GaSe Heterojunction for Photocatalytic Water Splitting: A DFT Study. Materials Science in Semiconductor Processing, 159, Article 107393. [Google Scholar] [CrossRef]
|
|
[53]
|
Wu, H.-Y., Yang, K., Si, Y., et al. (2019) Two-Dimensional GaX/SnS2(X=S, Se) van der Waals Heterostructures for Photovoltaic Application: Heteroatom Doping Strategy to Boost Power Conversion Efficiency. physica Status Solidi (RRL)-Rapid Research Letters, 13, Article 1800565. [Google Scholar] [CrossRef]
|
|
[54]
|
Ruan, S., Li, X., Li, S., et al. (2023) Structural and Electronic Properties of Substitutionally Doped SnS2/WSe2 Hetero-Bilayer. Solid State Communications, 370, Article 115230. [Google Scholar] [CrossRef]
|
|
[55]
|
Tan, X., Luo, J., Liu, L., et al. (2020) Tunable Electronic Structures of C2N/Germanane van der Waals Heterostructures Using an External Electric Field and Normal Strain. Physica E-Low-Dimensional Systems & Nanostructures, 124, Article 114334. [Google Scholar] [CrossRef]
|
|
[56]
|
Yang, T., Zheng, B., Wang, Z., et al. (2017) Van der Waals Epitaxial Growth and Optoelectronics of Large-Scale WSe2/SnS2 Vertical Bilayer p-n Junctions. Nature Communications, 8, Article No. 1906. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Lei, C., Ma, Y., Xu, X., et al. (2019) Broken-Gap Type-III Band Alignment in WTe2/HfS2 van der Waals Heterostructure. Journal of Physical Chemistry C, 123, 23089-23095. [Google Scholar] [CrossRef]
|