220 kV/3 kA冷绝缘高温超导电缆的轴向温度分布
Longitudinal Temperature Distribution for 220 kV/3 kA CD HTS Cable
DOI: 10.12677/TDET.2012.12002, PDF, HTML, 下载: 3,040  浏览: 9,814  国家自然科学基金支持
作者: 郑志强, 李 肖, 程 远, 代常会:华北电力大学高电压技术与电磁兼容北京市重点实验室,新能源电力系统国家重点实验室;王银顺:华北电力大学高电压技术与电磁兼容北京市重点实验室;薛 驰, 赵连岐:中天科技集团股份有限公司
关键词: 高温超导电缆冷绝缘泵浦损耗换热特性温度分布High Temperature Superconducting (HTS) Cable; Cold Dielectric (CD); Pumping Loss; Heat Transfer Characteristics; Temperature Distribution
摘要: 对远距离输电高温超导电缆而言,液氮在电缆导体骨架与低温容器内如采用反向循环流动制冷方式会导致电缆两端温差过大,因此高温超导电缆应采用液氮同向流动的制冷方式。由于波纹管具有优良的机械强度与热补偿特性,使其在高温超导电缆中得到了广泛应用,它可以形成冷却超导体用的制冷液氮的流通通道。在高温超导电缆设计之前有必要对液氮在波纹管中的流动特性进行研究。文章对波纹管通道内液氮流动的摩擦系数随雷诺数的变化规律进行了研究分析,得到了220 kV/3 kA高温超导电缆液氮流动产生的泵浦损耗值。在得到了高温超导电缆的各项损耗值之后,对高温超导电缆的温度分布进行了研究,并得到高温超导电缆温度分布方程以及温度分布规律曲线图。
Abstract: For long distance transmission HTS cables, co-flow cooling of LN2 should be adopted, since that counter- flow cooling of LN2 incable former and cryostat may lead to large temperature difference between cable terminals. Due to their extraordinary property of mechanical strength and thermal compensation, corrugated pipes can be widely used in flowing channels of cooling liquid nitrogen (LN2), the coolant of superconductors. Hydraulic characteristics of LN2 incorrugated pipes are needed to be studied in design of high temperature superconducting (HTS) cable. Variation law of friction factors with Reynolds number for LN2 flow in corrugated pipes is systematically studied, and therefore value of pumping loss, which is caused by LN2 flowing in the corrugated pipe channels, for 220 kV/3 kA HTS cables can be obtained. Based on all items of losses of HTS cable calculated, equations and curve of temperature distribution for HTS cable can be finally obtained.
文章引用:郑志强, 王银顺, 李肖, 程远, 代常会, 薛驰, 赵连岐. 220 kV/3 kA冷绝缘高温超导电缆的轴向温度分布[J]. 输配电工程与技术, 2012, 1(2): 7-12. http://dx.doi.org/10.12677/TDET.2012.12002

参考文献

[1] 王银顺. 超导电力技术基础[M]. 北京: 科学出版社, 2011.
[2] 林良真. 我国超导技术研究现状及展望[J]. 电工技术学报, 2005, 20(1): 1-7.
[3] 林良真, 肖立业. 高温超导输电电缆的现状与发展[J]. 电力设备, 2007, 8(1): 1-4.
[4] 孙凤玉, 徐烈等. 高温超导电缆用波纹管内液氮流动特性的数值研究[J]. 低温技术, 2007, 35(5): 376-380.
[5] S. Fuchino, et al. Longitudinal temperature distribution in super- conducting power cables with counter-flow cooling. IEEE Transaction on Applied Superconductivity, 2002, 12(1): 1339- 1342.
[6] 张英主. 工程流体力学[M]. 北京: 中国水利水电出版社, 2002: 69-77.
[7] T. S. Drew, E. C. Koo and W. H. McAdams. The friction factor in clean, round pipes. Transactions of the American Institute of Chemical Engineers, 1932, 28: 56.
[8] S. Fuchino, et al. Hydraulic characteristics in superconducting power transmission cables. Physica C, 2001, 354: 125-128.
[9] JSME. JSME data book: Heat transfer. 4th Edition, Tokyo: Ma- ruzen, 1991: 255.
[10] F. D. Yeaple, et al. Hydraulic and pneumatic power and control. McGraw-Hill, New York, 1966.
[11] S. Pethkool, et al. Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. International Communications in Heat and Mass Transfer, 2011, 38: 340-347.
[12] J. G. Weisend and S.W. Van Sciver. Pressure drop from flow of cryogens in corrugated bellows. Cryogenics, 1990, 30: 935-941.
[13] J. A. Demko, et al. Practical AC loss and thermal considerations for HTS power transmission cable systems. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1789-1792.
[14] S. Akita, K. Ishihara, J. Ogata and M. Nemoto. Development of external cooling cryoresistive cable system. Komae Research Laboratory Report No. T86081, Nihon Kikai Gakkai, 1987.
[15] T. Masuda et al. Study of a 66kV 3-core high-T superconducting cable. IEEE Japanese Proceedings of 11th Annual Conference on Power & Energy Society, 2000: 592-593.