表观遗传与情感障碍
Epigenetics and Affective Disorder
DOI: 10.12677/IJPN.2012.13007, PDF, HTML, XML, 下载: 3,988  浏览: 15,787 
作者: 王长虹, 张晓莉*, 李 晏*:新乡医学院第二附属医院;潘艳娟, 吕琼琼, 杨 俊*:新乡医学院药学院
关键词: DNA甲基化环境表观遗传学情感障碍应激易感性DNA Methylation; Environment; Epigenetics; Affective Disorder; Stress Susceptibility
摘要: 抑郁症发展成为应激与个体对应激易感性的相互作用的结果,早期的生活压力和基因–环境相互作用可能是抑郁症的危险因素,并在个体应激易感的进展中发挥重要作用。糖皮质激素受体基因启动子的表观调节被认为是应激易感性的分子基础。脑源性神经营养因子启动子的组蛋白修饰可能是抗抑郁药和电休克治疗的调节机制。临床遗传学研究表明基因组印记参与了双向障碍的发病,但还没有直接的分子证据的报道。通过组蛋白脱乙酰基酶抑制剂-丙戊酸盐及DNA甲基化供体-S-腺苷甲硫氨酸的抗躁狂作用的研究,认为DNA甲基化参与了情绪的调节。双向障碍患者的尸检发现,其脑组织膜结合儿茶酚胺-O-甲基转移酶的启动子区的DNA存在甲基化改变。一对患有双向障碍单卵双生的双胞胎的PPIEL被发现存在DNA甲基化状态。在一个双向障碍II型的对照病例中发现PPIEL低甲基化。这些研究结果表明表观遗传在情感障碍中可能发生作用。对情感障碍的表观遗传机制的进一步研究是必要的。 Depression developed into a result of the interaction of stress and individual stress susceptibility, the possible risk factors were the early life pressure and gene-environment interaction, which played an important role in the development of individual stress susceptibility. The glucocorticoid receptor gene promoter apparent adjustment was considered to be the molecular basis of the susceptibility of stress. Brain-deried neurotrophic factor promoters of the protein modification may be antidepressants and electric shock treatment of adjustment mechanism. Clinical genetics research indicated that genomic imprinting involved in the biplor disorder come on, but had no direct evidence of the molecules of the report. Through the research resistance to manic function of group of protein deacelation base enzyme inhibitors-valproic acid salt and DNA methylation donor-S-adenosine armour sulfur acid, showed that DNA methylation involved in emotional adjustment. Two-way barrier patient autopsy discovered that the brain membrane combined with catecholamine-O-phenol-o-methyl shift enzyme promoter of the DNA methylation change there. A single egg with two-way obstacles of twins shared the PPIEL was found DNA methylation state. The conclusion was that epigenetic may act in emotional disorders. It was necessary for further study of epigenetic mechanisms of affective disorder.
文章引用:王长虹, 张晓莉, 潘艳娟, 吕琼琼, 李晏, 杨俊. 表观遗传与情感障碍[J]. 国际神经精神科学杂志, 2012, 1(3): 27-31. http://dx.doi.org/10.12677/IJPN.2012.13007

参考文献

[1] N. Cervoni, M. Szyf. Demethylase activity is directed by histone acetylation. The Journal of Biological Chemistry, 2001, 276(44): 40778-40787.
[2] N. Detich, J. Theberge and M. Szyf. Promoter-specific activation and demethylation by MBD2/demethylase. The Journal of Bio- logical Chemistry, 2002, 277(39): 35791-35794.
[3] D. Bruniquel, R. H. Schwartz. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active proc- ess. Nature Immunology, 2003, 4(3): 235-240.
[4] K. Martinowich, D. Hattori, H. Wu, et al. DNA methylation- related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 2003, 302(5646): 890-893.
[5] I. C. Weaver, N. Cervoni, F. A. Champagne, et al. Epigenetic programming by maternal behavior. Nature Neuroscience, 2004, 7(8): 847-854.
[6] M. J. Meaney, M. Szyf. Maternal care as a model for experi- ence-dependent chromatin plasticity? Trends Neuroscience, 2005, 28(9): 456-463.
[7] N. Tsankova, W. Renthal, A. Kumar, et al. Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 2007, 8(5): 355-367.
[8] A. Razin, S. Razin. Methylated bases in mycoplasmal DNA. Nucleic Acids Research, 1980, 8(6): 1383-1390.
[9] M. Comb, H. M. Goodman. CpG methylation inhibits proen- kephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Research, 1990, 18(13): 3975-3982.
[10] T. Jenuwein, C. D. Allis. Translating the histone code. Science, 2001, 293(5532): 1074-1080.
[11] M. Szyf. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc), 2005, 70(5): 533-549.
[12] D. A. Regier, J. H. Boyd, J. D. Burke, et al. One-month preva- lence of mental disorders in the United States. Based on five Epidemiologic Catchment Area sites. Archives of General Psy- chiatry, 1988, 45(11): 977-986.
[13] R. C. Kessler, W. T. Chiu, O. Demler, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry 2005, 62(6): 617-627.
[14] A. D. Lopez, C. C. Murray. The global burden of disease, 1990-2020. Nature Medicine 1998, 4(11): 1241-1243.
[15] S. M. Monroe, A. D. Simons and M. E. Thase. Onset of depres- sion and time to treatment entry: Roles of life stress. Journal of Consulting and Clinical Psychology, 1991, 59(4): 566-573.
[16] K. S. Kendler, R. C. Kessler, E. E. Walters, et al. Stressful life events, genetic liability, and onset of an episode of major de- pression in women. American Journal of Psychiatry, 1995, 152(6): 833-842.
[17] E. Castren. Neurotrophic effects of antidepressant drugs. Current Opinion in Pharmacology, 2004, 4(1): 58-64.
[18] E. Castren, V. Voikar and T. Rantamaki. Role of neurotrophic factors in depression. Current Opinion in Pharmacology, 2007, 7(1): 18-21.
[19] P. J. Cowen. Serotonin and depression: Pathophysiological mecha- nism or marketing myth? Trends in Pharmacological Sciences, 2008, 29(9): 433-436.
[20] A. Caspi, K. Sugden, T. E. Moffitt, et al. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 2003, 301(5631): 386-389.
[21] P. G. Surtees, N. W. Wainwright, S. A. Willis-Owen, et al. Social adversity, the serotonin transporter (5-HTTLPR) polymorphism and major depressive disorder. Biological Psychiatry, 2006, 59(3): 224-229.
[22] T. Canli, M. Qiu, K. Omura, et al. Neural correlates of epigene- sis. Proceedings of the National Academy of Sciences USA, 2006, 103(43): 16033-16038.
[23] P. E. Bebbington, D. Bhugra, T. Brugha, et al. Psychosis, vic- timisation and childhood disadvantage: evidence from the sec- ond. British National Survey of Psychiatric Morbidity, 2004, 185: 220-226.
[24] A. Kaffman, M. J. Meaney. Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights. The Journal of Child Psychology and Psychiatry, 2007, 48(3-4): 224-244.
[25] P. E. Mullen, J. L. Martin, J. C. Anderson, et al. The long-term impact of the physical, emotional, and sexual abuse of children: A community study. Child Abuse & Neglect, 1996, 20(1): 7-21.
[26] D. Maestripieri. The biology of human parenting: Insights from nonhuman primates. Neuroscience & Biobehavioral Reviews, 1999, 23(3): 411-422.
[27] D. Maestripieri. Early experience affects the intergenerational transmission of infant abuse in rhesus monkeys. Proceedings of National Academy Science USA, 2005, 102(27): 9726-9729.
[28] M. M. Sanchez. The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Be- havior, 2006, 50(4): 623-631.
[29] C. Murgatroyd, A. V. Patchev, Y. Wu, et al. Dynamic DNA me- thylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 2009, 12(12): 1559-1566.
[30] P. O. McGowan, A. Sasaki, A. C. D’Alessio, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associ- ates with childhood abuse. Nature Neuroscience, 2009, 12(3): 342- 348.
[31] M. J. Webster, M. B. Knable, J. O’Grady, et al. Regional speci- ficity of brain glucocorticoid receptor mRNA alterations in sub- jects with schizophrenia and mood disorders. Molecular Psy- chiatry, 2002, 7(9): 985-994, 924.
[32] J. Y. Lau, T. C. Eley. The genetics of mood disorders. Annual Reviews of Clinical Psychology, 2010, 6: 313-337.
[33] C. Caldji, B. Tannenbaum, S Sharma, et al. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceeding of National Academy Science USA, 1998, 95(9): 5335-5340.
[34] D. Francis, J. Diorio, D. Liu, et al. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 1999, 286(5442): 1155-1158.
[35] J. A. McCormick, V. Lyons, M. D. Jacobson, et al. 5'-heteroge- neity of glucocorticoid receptor messenger RNA is tissue spe- cific: Differential regulation of variant transcripts by early-life events. Molecular Endocrinology, 2000, 14(4): 506-517.
[36] W. M. Daniels, L. R. Fairbairn, G. van Tilburg, et al. Maternal separation alters nerve growth factor and corticosterone levels but not the DNA methylation status of the exon 1(7) glucocorti- coid receptor promoter region. Metabolic Brain Disease, 2009, 24(4): 615-627.
[37] M. J. Meaney, D. H. Aitken, V. Viau, et al. Neonatal handling alters adrenocortical negative feedback sensitivity and hippo- campal type II glucocorticoid receptor binding in the rat. Neu- roendocrinology, 1989, 50(5): 597-604.
[38] I. C. Weaver, F A. Champagne, S. E. Brown, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. Journal of Neuroscience, 2005, 25(47): 11045-11054.
[39] S. E. Hyman. Even chromatin gets the blues. Nature Neurosci- ence, 2006, 9(4): 465-466.
[40] M. G. Lee, C. Wynder, D. M. Schmidt, D. G. McCafferty and R. Shiekhattar. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chemistry & Biology, 2006, 13(6): 563-567.
[41] N. M. Tsankova, A. Kumar and E. J. Nestler. Histone modifica- tions at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. Journal of Neuroscience, 2004, 24(24): 5603-5610.
[42] N. M. Tsankova, O. Berton, W. Renthal, et al. Sustained hippo- campal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 2006, 9(4): 519- 525.