|
[1]
|
M. J. Emes, H. E. Neuhaus. Metabolism and transport in non- photosynthetic plastids. Journal of Experimental Botany, 1997, 48(12): 1995-2005.
|
|
[2]
|
P. Geigenberger, A. Kolbe and A. Tiessen. Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany, 2005, 56(416): 1469-1479.
|
|
[3]
|
A. Tiessen, J. H. M. Hendriks, M. Stitt, et al. Starch synthesis in potato tubers is regulated by post-translational redox modifi- cation of ADP-Glucose pyrophosphorylase: A novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 2002, 14(9): 2191-2213.
|
|
[4]
|
A. Tiessen, K. Prescha, A. Branscheid, et al. Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. The Plant Journal, 2003, 35(4): 490-500.
|
|
[5]
|
B. Müller-Röber, U. Sonnewald and L. Willmitzer. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and ex- pression of tuber storage protein genes. EMBO Journal, 1992, 11(4): 1229-1238.
|
|
[6]
|
J. R. Lloyd, F. Springer, A. Buléon, et al. The influence of alter- ations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta, 1999, 209(2): 230-238.
|
|
[7]
|
D. M. Stark, K. P. Timmerman, G. F. Barry, et al. Regulation of the amount of starch in plant tissues by ADP glucose pyro- phosphorylase. Science, 1992, 258(5080): 287-292.
|
|
[8]
|
U. Ihemere, D. Arias-Garzon, S. Lawrence, et al. Genetic modi- fication of cassava for enhanced starch production. Plant Bio- technology Journal, 2006, 4(4): 453-465.
|
|
[9]
|
T. Hamada, S. H. Kim and T. Shimada. Starch-branching enzy- me I gene (IbSBEI) from sweet potato (Ipomoea batatas); mole- cular cloning and expression analysis. Biotechnology Letters, 2006, 28(16): 1255-1261.
|
|
[10]
|
S. H. Kim, K. Mizuno, S. Sawada, et al. Regulation of tuber formation and ADP-glucose pyrophosphorylase (AGPase) in sweet potato (Ipomoea batatas (L.) Lam.) by nitrate. Plant Growth Regulation, 2002, 37(3): 207-213.
|
|
[11]
|
M. G. James, K. Denyer and A. M. Myers. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6: 215-222.
|
|
[12]
|
A. Tiessen, A. Nerlich, B. Faix, et al. Sub-cellular analysis of starch metabolism in developing barley seeds using a non- aqueous fractionation method. Journal of Experimental Botany, 2012, 63(5): 2071-2087.
|
|
[13]
|
T. R. I. Munyikwa, S. Langeveld, S. N. I. M. Salehuzzaman, et al. Cassava starch biosynthesis: New avenues for modifying starch quantity and quality. Euphytica, 1997, 96(1): 65-75.
|
|
[14]
|
T. Nakamura, P. Vrinten, K. Hayakawa, et al. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiology, 1998, 118(2): 451-459.
|
|
[15]
|
J. H. M. Hovenkamp-Hermelink, E. Jacobsen, A. S. Ponstein, et al. Isolation of an amylose-free starch mutant of the potato (So- lanum tuberosum L.). Theoretical and Applied Genetics, 1987, 75(1): 217-221.
|
|
[16]
|
O. E. Nelson, H. W. Rines. The enzymatic deficiency in the waxy mutant of maize. Biochemical and Biophysical Research Communications, 1962, 9: 297-300.
|
|
[17]
|
P. Vrinten, T. Nakamura and M. Yamamori. Molecular charac- terization of waxy mutations in wheat. Molecular and General Genetics 1999, 261(3): 463-471.
|
|
[18]
|
H. Tatge, J. Marshall, C. Martin, et al. Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers. Plant, Cell & Environment, 1999, 22(5): 543-550.
|
|
[19]
|
J. P. Ral, C. Colleoni, F. Wattebled, et al. Circadian clock regula- tion of starch metabolism establishes GBSSI as a major contri- butor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiology, 2006, 142: 305-317.
|
|
[20]
|
D. C. Fulton, A. Edwards, E. Pilling, et al. Role of granule- bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. Journal of Biological Chemistry, 2002, 277(13): 10834-10841.
|
|
[21]
|
I. Hanashiro, K. Itoh, Y. Kuratomi, et al. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant and Cell Physiology, 2008, 49(6): 925-933.
|
|
[22]
|
K. Denyer, B. Clarke, C. Hylton, et al. The elongation of amy- lose and amylopectin chains in isolated starch granules. The Plant Journal, 1996, 10(6): 1135-1143.
|
|
[23]
|
S. C. Zeeman, S. M. Smith and A. M. Smith. The priming of amylose synthesis in Arabidopsis leaves. Plant Physiology, 2002, 128(3): 1069-1076.
|
|
[24]
|
K. Denyer, D. Waite, A. Edwards, et al. Interaction with amy- lopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides. Biochemical Journal, 1999, 342(3): 647-653.
|
|
[25]
|
M. Van de Wal, C. D’Hulst, J.P. Vincken, et al. Amylose is syn- thesized in vitro by extension of and cleavage from amylopectin. Journal of Biological Chemistry, 1998, 273(35): 22232-22240.
|
|
[26]
|
A. Kuipers, E. Jacobsen and R. Visser. Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression. Plant Cell, 1994, 6(1): 43-52.
|
|
[27]
|
M. Seguchi, M. Hayashi, Y. Suzuki, et al. Role of amylose in the maintenance of the configuration of rice starch granules. Starch- Stärke, 2003, 55(11): 524-528.
|
|
[28]
|
S. S. Zhao, D. Dufour, T. Sánchez, et al. Development of waxy cassava with different biological and physico-chemical charac- teristics of starches for industrial applications. Biotechnology and Bioengineering, 2011, 108(8): 1925-1935.
|
|
[29]
|
S. C. Zeeman, J. Kossmann and A. M. Smith. Starch: Its meta- bolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 2010, 61(1): 209-234.
|
|
[30]
|
J. Kossmann, G. J. W. Abel, F. Springer, et al. Cloning and func- tional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantly expressed in leaf tissue. Planta, 1999, 208(4): 503-511.
|
|
[31]
|
Y. Takahata, M. Tanaka, M. Otani, et al. Inhibition of the expres- sion of the starch synthase II gene leads to lower pasting tem- perature in sweetpotato starch. Plant Cell Reports, 2010, 29(6): 535-543.
|
|
[32]
|
A. Edwards, D. C. Fulton, C. M. Hylton, et al. A combined re- duction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. The Plant Journal, 1999, 17(3): 251-261.
|
|
[33]
|
J. Marshall, C. Sidebottom, M. Debet, et al. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell, 1996, 8(7): 1121-1135.
|
|
[34]
|
M. Gao, J. Wanat, P. S. Stinard, et al. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell, 1998, 10(3): 399-412.
|
|
[35]
|
Y. J. Wang, P. White, L. Pollak, et al. Characterization of starch structures of 17 maize endosperm mutant genotypes with 0h43 inbred line background. Cereal Chemistry, 1993, 70(2): 171-179.
|
|
[36]
|
I. Roldán, F. Wattebled, M. M. Lucas, et al. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. The Plant Journal, 2007, 49(3): 492-504.
|
|
[37]
|
N. Szydlowski, P. Ragel, S. Raynaud, et al. Starch granule ini- tiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell, 2009, 21(8): 2443-2457.
|
|
[38]
|
F. Grimaud, H. Rogniaux, M. G. James, et al. Proteome and pho- sphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. Journal of Experimental Botany, 2008, 59(12): 3395-3406.
|
|
[39]
|
H. Cao, J. Imparl-Radosevich, H. Guan, et al. Identification of the soluble starch synthase activities of maize endosperm. Plant Physiology, 1999, 120(1): 205-216.
|
|
[40]
|
T. H. Nielsen, L. Baunsgaard and A. Blennow. Intermediary glu- can structures formed during starch granule biosynthesis are enriched in short side chains, a dynamic pulse labeling approach. Journal of Biological Chemistry, 2002, 277(23): 20249-20255.
|
|
[41]
|
S. A. Jobling, G. P. Schwall, R. J. Westcott, et al. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: Cloning and char- acterisation of multiple forms of SBE A. The Plant Journal, 1999, 18(2): 163-171.
|
|
[42]
|
T. Shimada, M. Otani, T. Hamada, et al. Increase of amylose content of sweet potato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnology, 2006, 23: 85-90.
|
|
[43]
|
R. Safford, S. A. Jobling, C. M. Sidebottom, et al. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydrate Polymers, 1998, 35(3-4): 155-168.
|
|
[44]
|
G. P. Schwall, R. Safford, R. J. Westcott, et al. Production of very-high-amylose potato starch by inhibition of SBE A and B. Nature Biotechnology, 2000, 18(5): 551-554.
|
|
[45]
|
U. Rydberg, L. Andersson, R. Andersson, et al. Comparison of starch branching enzyme I and II from potato. European Journal of Biochemistry, 2001, 268(23): 6140-6145.
|
|
[46]
|
A. Blennow, A. M. Bay-Smidt, B. Wischmann, et al. The degree of starch phosphorylation is related to the chain length distri- bution of the neutral and the phosphorylated chains of amylo- pectin. Carbohydrate Research, 1998, 307(1-2): 45-54.
|
|
[47]
|
M. K. Morell, A. Blennow, B. Kosar-Hashemi, et al. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiology, 1997, 113(1): 201-208.
|
|
[48]
|
L. J. C. B. Carvalho, C. R. B. de souza, J. C. De cascardo, et al. Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch. Plant Molecular Biology, 2004, 56(4): 643-659.
|
|
[49]
|
H. Hussain, A. Mant, R. Seale, et al. Three isoforms of isoa- mylase contribute different catalytic properties for the debranch- ing of potato glucans. Plant Cell, 2003, 15(1): 133-149.
|
|
[50]
|
Y. Utsumi, Y. Nakamura. Structural and enzymatic character- ization of the isoamylase1 homo-oligomer and the isoamylase1- isoamylase2 hetero-oligomer from rice endosperm. Planta, 2006, 225(1): 75-87.
|
|
[51]
|
T. Delatte, M. Trevisan, M. L. Parker, et al. Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distri- bution of amylopectin during starch synthesis. The Plant Journal, 2005, 41(6): 815-830.
|
|
[52]
|
R. Bustos, B. Fahy, C. M. Hylton, et al. Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 2215-2220.
|
|
[53]
|
R. A. Burton, H. Jenner, L. Carrangis, et al. Starch granule initi- ation and growth are altered in barley mutants that lack isoa- mylase activity. The Plant Journal, 2002, 31(1): 97-112.
|
|
[54]
|
D. Dauvillée, C. Colleoni, G. Mouille, et al. Biochemical charac- terization of wild-type and mutant isoamylases of chlamydo- monas reinhardtii supports a function of the multimeric enzyme organization in amylopectin maturation. Plant Physiology, 2001, 125(4): 1723-1731.
|
|
[55]
|
Y. Nakamura. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant and Cell Physiology, 2002, 43(7): 718-725.
|
|
[56]
|
A. M. Myers, M. K. Morell, M. G. James, et al. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology, 2000, 122(4): 989-998.
|
|
[57]
|
S. Streb, T. Delatte, M. Umhang, et al. Starch granule biosyn- thesis in arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoa- mylase. Plant Cell, 2008, 20(12): 3448-3466.
|
|
[58]
|
D. Beyene, Y. Baguma, S. B. Mukasa, et al. Characterisation and role of Isoamylase1 (Meisa1) gene in cassava. African Crop Sci- ence Journal, 2010, 18: 1-8.
|
|
[59]
|
S. H. Kim, T. Hamada, M. Otani, et al. Cloning and character- ization of sweetpotato isoamylase gene (IbIsa1) isolated from tuberous root. Breeding Science, 2005, 55(4): 453-458.
|
|
[60]
|
U. Sonnewald, A. Basner, B. Greve, et al. A second L-type iso- zyme of potato glucan phosphorylase: Cloning, antisense inhi- bition and expression analysis. Plant Molecular Biology, 1995, 27(3): 567-576.
|
|
[61]
|
H. Satoh, K. Shibahara, T. Tokunaga, et al. Mutation of the plastidial α-glucan phosphorylase gene in rice affects the syn- thesis and structure of starch in the endosperm. Plant Cell, 2008, 20(7): 1833-1849.
|
|
[62]
|
I. J. Tetlow, R. Wait, Z. Lu, et al. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 2004, 16(3): 694-708.
|
|
[63]
|
T. Albrecht, A. Koch, A. Lode, et al. Plastidic (Pho1-type) pho- sphorylase isoforms in potato (Solanum tuberosum L.) plants: Expression analysis and immunochemical characterization. Planta, 2001, 213(4): 602-613.
|
|
[64]
|
S. G. Ball and M. K. Morell. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology, 2003, 54(1): 207-233.
|
|
[65]
|
T. Takaha, J. Critchley, S. Okada, et al. Normal starch content and composition in tubers of antisense potato plants lacking D- enzyme (4-α-glucanotransferase). Planta, 1998, 205(3): 445-451.
|
|
[66]
|
M. Steup, H. Robenek and M. Melkonian. In-vitro degradation of starch granules isolated from spinach chloroplasts. Planta, 1983, 158(5): 428-436.
|
|
[67]
|
E. Duwenig, M. Steup, L. Willmitzer, et al. Antisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism. The Plant Journal, 1997, 12(2): 323-333.
|
|
[68]
|
J. P. Davis, N. Supatcharee, R. L. Khandelwal, et al. Synthesis of novel starches in planta: Opportunities and challenges. Starch- Stärke, 2003, 55(3-4): 107-120.
|
|
[69]
|
A. Stensballe, S. Hald, G. Bauw, et al. The amyloplast proteome of potato tuber. FEBS Journal, 2008, 275(8): 1723-1741.
|
|
[70]
|
I. J. Tetlow, K. G. Beisel, S. Cameron, et al. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiology, 2008, 146(4): 1878-1891.
|
|
[71]
|
T. A. Hennen-Bierwagen, Q. Lin, F. Grimaud, et al. Proteins from multiple metabolic pathways associate with starch biosyn- thetic enzymes in high molecular weight complexes: A model for regulation of carbon allocation in maize amyloplasts. Plant Physiology, 2009, 149(3): 1541-1559.
|
|
[72]
|
T. A. Hennen-Bierwagen, F. Liu, R. S. Marsh, et al. Starch bio- synthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiology, 2008, 146(4): 1892-1908.
|
|
[73]
|
F. Liu, Z. Ahmed, E. A. Lee, et al. Tetlow allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein: Protein interactions Journal of Experimental Botany, 2012, 63(3): 1167-1183.
|
|
[74]
|
K. Raemakers, M. Schreuder, L. Suurs, et al. Improved cassava starch by antisense inhibition of granule-bound starch synthase I. Molecular Breeding, 2005, 16(2): 163-172.
|