LFP(ε)上两种拓扑的比较与LFP(S)的完备性
A Comparison of Two Topologies for LFP(ε)   and the Completeness of LFP(S)
                  
              
    
                  
                    
                    摘要: 
	首先,本文对 上的
上的 -拓扑和依概率收敛拓扑作了一点初步的对比。接着,以
-拓扑和依概率收敛拓扑作了一点初步的对比。接着,以 为桥梁,利用其上两种拓扑的关系,运用随机赋范模理论中的一些结果给出Stricker引理的证明。最后,本文证明随机赋范模S生成的随机赋范模
为桥梁,利用其上两种拓扑的关系,运用随机赋范模理论中的一些结果给出Stricker引理的证明。最后,本文证明随机赋范模S生成的随机赋范模 是完备的当且仅当S是完备的。
是完备的当且仅当S是完备的。
                 
              
                
                    Abstract: First, we make a primary comparison of the -topology and the topology of convergence in probability for
 -topology and the topology of convergence in probability for  . Then, using the relation of the two kinds of topologies for
 . Then, using the relation of the two kinds of topologies for  , we give a proof of Stricker’s lemma based on a result in the theory of random normed modules. At last, we show that the random normed module
 , we give a proof of Stricker’s lemma based on a result in the theory of random normed modules. At last, we show that the random normed module  is complete if and only if  is complete.
  is complete if and only if  is complete.
                 
                   
                  
    
  
 
     
    
    
                
         
                
                
                 
                
                    
                        参考文献
                        
                            
                                    
                                        | [1] | D. Filipović, M. Kupper and N. Vogelpoth. Separation and duality in locally  -convex modules. Journal of Functional Analysis, 2009, 256: 3996-4029. | 
                     
                                
                                    
                                        | [2] | D. Filipović, M. Kupper and N. Vogelpoth. Approaches to conditional risks. Working Paper Series No. 28, Vienna: Vienna Institute of Finance, 2009. | 
                     
                                
                                    
                                        | [3] | T. X. Guo. Recent progress in random metric theory and its applications to conditional risk measures. Science China Mathematics, 2011, 54(4): 633-660. | 
                     
                                
                                    
                                        | [4] | T. X. Guo. Relations between some basic results derived from two kinds of topologies for a random locally convex module. Journal of Functional Analysis, 2010, 258: 3024-3047. | 
                     
                                
                                    
                                        | [5] | T. X. Guo, S. B. Li. The James theorem in complete random normed modules. Journal of Mathematical Analysis and Applications, 2005, 308: 257-265. | 
                     
                                
                                    
                                        | [6] | M. Z. Wu. The Bishop-Phelps theorem in complete random normed modules endowed with the  -topology. Journal of Mathematical Analysis and Applications, 2012, 391: 648-652. | 
                     
                                
                                    
                                        | [7] | 严加安. 测度论讲义[M]. 北京: 科学出版社, 2004. | 
                     
                                
                                    
                                        | [8] | B. Schweizer, A. Sklar. Probabilistic metric spaces. New York: Dover Publications, 2005. | 
                     
                                
                                    
                                        | [9] | H. Fӧllmer, A. Schied. Stochastic finance, an introduction in discrete time. Berlin, New York: Walter de Gruyter, 2002. | 
                     
                                
                                    
                                        | [10] | T. X. Guo, G. Shi. The algebraic structure of finitely generated  -modules and the Helly theorem in random normed modules. Journal of Mathematical Analysis and Applications, 2011, 381: 833-842. |