纳米CeO2的铁磁性起源研究进展
Research Progress of Origin of Ferromagnetic in Nanoparticle CeO 2
DOI: 10.12677/CMP.2013.21001, PDF, HTML, XML,  被引量 下载: 3,535  浏览: 14,230  科研立项经费支持
作者: 罗婧婧, 查根胜, 王坤坤, 孟凡明*:安徽大学物理与材料科学学院
关键词: CeO2铁磁性起源CeO2; Ferromagnetic; Origin
摘要: CeO2因其具有铁磁性,在电子自旋器件方面有着广泛的应用前景。本文简要概述了近年来国内外学者关于CeO2铁磁性起源的研究成果,主要包括氧空位、磁性离子掺杂、表面Ce3+/Ce4+对、铈空位、表面Ce3+浓度、晶粒尺寸等原因。同时,对目前CeO2铁磁性起源研究存在的问题和未来研究方向进行总结和展望。 CeO2 has a broad application prospect in electronic spin devices due to its ferromagnetic. The research achievements of scholars domestic and overseas in recent years about the origins of the ferromagnetic of CeO2 was discussed in this paper briefly, mainly including oxygen vacancies, doping magnetic ions, Ce3+/Ce4+ pairs on surface, cerium vacancies, consistence of Ce3+ on surface, size of grains, et al. Meanwhile, the problems of the research and re- search direction about the origin ferromagnetic of CeO2 was summed up in this article and looked into the distance.
文章引用:罗婧婧, 查根胜, 王坤坤, 孟凡明. 纳米CeO2的铁磁性起源研究进展[J]. 凝聚态物理学进展, 2013, 2(1): 1-4. http://dx.doi.org/10.12677/CMP.2013.21001

参考文献

[1] G. C. Li, K. Chao, H. R. Peng, K. Z. Chen and Z. K. Zhang. Facile synthesis of CePO4 nanowires attached to CeO2 octahedral micrometer crystals and their enhanced photoluminescence properties. The Journal of Physical Chemistry C, 2008, 112(42): 16452-16456.
[2] X. D. Feng, D. C. Sayle, Z. L. Wang, P. M. Sharon, B. Santora, A. C. Storik, T. X. T. Sayle, Y. Yang, Y. Ding, X. D. Wang and Y. S. Her. Converting ceria polyhedral nanoparticles into single- crystal nanospheres. Science, 2006, 312(5779): 1504-1508.
[3] L. Li, Y. S. Chen. Preparation of nanometer-scale CeO2 particles via a complex thermo-decomposition method. Journal of Materials Science and Engineering A, 2005, 406(1): 180-185.
[4] R. Di Monte, J. Kaapar. Nanostructured CeO2-ZrO2 mixed oxides. Journal of Materials Chemistry, 2005, 15(6): 633.
[5] Y. P. Fu, S. H. Chen, F. Y. Tsai and S. H. Hu. Aqueous tape casting and crystallization kinetics of Ce0.8La0.2O1.9 powder. Ceramics International, 2009, 35(2): 609-615.
[6] M. Yan, T. Mori, J. Zou, F. Ye, D. R. Ou and J. Drennan. TEM and XPS analysis of CaxCe1−xO2−y (x = 0.05 - 0.5) as electrolyte materials for solid oxide fuel cells. Acta Materialia, 2009, 57(3): 722-731.
[7] X. F. Sun, S. R. Wang, Z. R. Wang, J. Q. Qian, T. L. Wen and F. Q. Huang. Evaluation of Sr0.88Y0.08TiO3-CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel. Journal of Power Sources, 2009, 187(1): 85-89.
[8] M. Aoki, Y. Chiang, I. Kosacki, L. J. R. Lee, H. Tuller and Y. P. Liu. Solute segregation and grain-boundary impedance in high- purity stabilized zirconia. Journal of the American Ceramic Society, 1996, 79(5): 1169-1180.
[9] A. Petrou, D. L. Peterson, S. Venugopalan, R. R. Galazka, A. K. Ramdas and S. Rodriguez. Zeeman Effect of the magnetic excitations in a diluted magnetic semiconduc-tors: A raman scattering study of Cd1−xMnxTe. Physical Review Letters, 1982, 48(15): 1036-1039.
[10] A. Petrou, D. L. Peterson, S. Venugopalan, R. R. Galazka, A. K. Ramdas and S. Rodriguez. Raman scattering study of the magnetic excitations in diluted magnetic semi-conductors in the presence of an external magnetic field. Physical Re-view B, 1983, 27(6): 3471-3482.
[11] J. A. Gaj, R. R. Gatazka and M. Nawrocki. Investigations of oxide glasses with use of Faraday Effect method. Solid Stata Communications, 1978, 25(3): 193.
[12] Y. Shapira, Jr., N. F. Oliveira, D. H. Ridgley, R. Kershaw, K. Dwight and A. Wold. Magnetoresistance and Hall Effect near the metal-insulator transition of Cd1−xMnxSe. Physical Review B, 1986, 34(6): 4187-4198.
[13] Y. Shapira, Jr., N. F. Oliveira, P. Becla and T. Q. Vu. Magnetoresistance and Hall Effect near the metal-insulator transition of n-type Cd0.95Mn0.05Te. Physical Review B, 1990, 41(9): 5931- 5941.
[14] X. P. Han, J. C. Lee and H. L. Yoo. Oxy-gen-vacancy-induced ferromagnetism in CeO2 from first principles. Physical Review B, 2009, 79(10): 100403(R).
[15] M. Y. Ge, H. Wang, E. Z. Liu and J. F. Liu. On the origin of ferromagnetism in CeO2 nanocubes. Applied Physics Letters, 2008, 93(6): Article ID: 062505.
[16] R. K. Singhal, P. Kumari, A. Samariya, S. Kumar, S. C. Sharma, Y. T. Xing and E. B. Saitovitch. Role of electronic structure and oxygen defects in driving ferromagnetism in nondoped bulk CeO2. Applied Physics Letters, 2010, 97(17): Article ID: 172503.
[17] 杨许文, 宋远强, 张怀武, 苏桦. Co掺杂对CeO2显微结构及磁性能的影响[J]. 磁性材料及器件, 2009, 40(5): 21-25.
[18] B. Vodungbo, Y. Zheng, F. Vidal, D. Demaille, V. H. Etgens and D. H. Mosca. Room temperature ferromagnetism of Co doped CeO2−δ diluted magnetic oxide: Effect of oxygen and anisotropy. Applied Physics Letters, 2007, 90(6): Article ID: 062510.
[19] Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. Q. Song and J. Q. Xiao. Effects of Fe doped and the dielectric con-stant on the room temperature ferromagnatism of polycrystalline CeO2 oxides. Journal of Applied Physics, 2010, 107(9): Article ID: 09C307.
[20] A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays and A. Punnoose. Ferromagnetism in chemically synthesized CeO2 nanoparticles by Ni doping. Physical Review B, 2007, 76(16): Article ID: 165206.
[21] M. J. Li, S. H. Ge, W. Qiao, L. Zhang, Y. L. Zuo and S. M. Yan. Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles. Applied Physics Letters, 2009, 94(15): Article ID: 152511.
[22] Y. L. Liu, Z. Lockman, A. Aziz and M. M. D. Judith. Size dependent ferro-magnetism in cerium oxide (CeO2) nanostructures independent of oxy-gen vacancies. Journal of Physics: Condensed Matter, 2008, 20: Article ID: 165201.
[23] V. Fernandes, R. J. O. Mossanek, P. Schio, J. J. Klein, A. J. A. de Oliveira, W. A. Ortiz, N. Mattoso, J. Varalda, W. H. Schreiner, M. Abbate and D. H. Mosca. Dilute-defect magnetism: Origin of magnetism in nanocrystalline CeO2. Physical Review B, 2009, 80(3): Article ID: 035202.
[24] S. Y. Chen, Y. H. Lu, T. W. Huang, D. C. Yan and C. L. Dong. Oxygen vacancy dependent mag-netism of CeO2 nanoparticles prepared by thermal decomposition method. The Journal of Physical Chemistry C, 2010, 114(46): 19576-19581.