某些C-S-置换子群对有限群结构的影响
Influence of Certain C-S-Permutable Subgroups on the Structure of Finite Groups
                  
              
    
                  
                    
                    摘要: 
	设H为有限群G的子群,C为G的非空子集。记 。如果对G的每个Sylow子群T,都存在某个
。如果对G的每个Sylow子群T,都存在某个 使得
使得 ,则称H在G中是C-S-置换的(共轭-Sylow-置换的)。本文,我们研究有限群G的某些C-S-置换子群对G的结构的影响,改进并推广了最近的一些结果。
,则称H在G中是C-S-置换的(共轭-Sylow-置换的)。本文,我们研究有限群G的某些C-S-置换子群对G的结构的影响,改进并推广了最近的一些结果。
	
                 
              
                
                    Abstract: Let H be a subgroup of a finite group G and C a nonempty subset of G. Denote  . H is said to be C-S-permutable (Conjugate-Sylow-permutable) in G, if, for every Sylow subgroup T of G, there exists some element
. H is said to be C-S-permutable (Conjugate-Sylow-permutable) in G, if, for every Sylow subgroup T of G, there exists some element   such that
such that  . In this paper, we study the influence of certain C$-S-permutable subgroups of the finite group G on its structure. Some recent results are improved and extended.
. In this paper, we study the influence of certain C$-S-permutable subgroups of the finite group G on its structure. Some recent results are improved and extended.
                 
                   
                  
    
  
 
     
    
    
                
         
                
                
                 
                
                    
                        参考文献
                        
                            
                                    
                                        | [1] | B. Huppert. Endliche Gruppen I. Berlin, Heidelberg, New York: Springer-Verlag, 1967. | 
                     
                                
                                    
                                        | [2] | O. H. Kegel. Sylow-Gruppen und subnormalteiler endlicher Gruppen. Mathematische Zeitschrift, 1962, 78: 205-221. | 
                     
                                
                                    
                                        | [3] | S. Srinivasan. Two sufficient conditions for supersolvability of finite groups. Israel Journal of Mathematics, 1980, 35: 210-214. | 
                     
                                
                                    
                                        | [4] | Z. Arad, M. B. Ward. New criteria for the solvability of finite groups. Journal of Algebra, 1982, 77: 234-246. | 
                     
                                
                                    
                                        | [5] | Y. Li, Y. Wang and H. Wei. The influence of π-quasinormality of some subgroups of a finite group. Archiv der Mathematik (Basel), 2003, 81(3): 245-252. | 
                     
                                
                                    
                                        | [6] | B. Huppert, N. Blackburn. Finite groups III. Berlin, New York: Springer-Verlag, 1982. | 
                     
                                
                                    
                                        | [7] | H. Wei, Y. Wang and Y. Li. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II. Communications in Algebra, 2003, 31(10): 4807-4816. | 
                     
                                
                                    
                                        | [8] | Y. Li, Y. Wang. On π-quasinormally embedded subgroups of finite group. Journal of Algebra, 2004, 281: 109-123. | 
                     
                                
                                    
                                        | [9] | M. Asaad and A. A. Heliel. On S-quasinormal embedded subgroups of finite groups. Journal of Pure and Applied Algebra, 2001, 165: 129-135. | 
                     
                                
                                    
                                        | [10] | M. Asaad. On maximal subgroups of Sylow subgroups of finite groups. Communications in Algebra, 1998, 26(11): 3647-3652. |