甘蓝型油菜种子抗营养物质的研究
Study on Anti-Nutritional Compounds in Seeds of Brassica napus
DOI: 10.12677/BR.2013.22010, PDF, HTML, XML,  被引量 下载: 3,318  浏览: 16,381  科研立项经费支持
作者: 邵彦林, 高亚楠, 孔月琴:;王幼平:扬州大学生物科学与技术学院,扬州
关键词: 甘蓝型油菜多酚化合物木质素纤维素 Brassica napus L.; Phenolic Compounds; Lignin; Fibre
摘要:

甘蓝型油菜是重要的油料作物,不仅可生产食用油,而且其饼粕富含蛋白质,可作为动物饲料。油菜种子中因含有大量抗营养物质,如多酚化合物、木质素和纤维素等,其中多酚物质主要包括单宁、原花色素、类黄酮、羟基苯丙烯酸的衍生物和芥子油苷等,这些物质会严重影响菜籽油的品质和饲料的营养价值。本文主要介绍这些抗营养物质的种类、分离和测定方法,为油菜品质育种和改良提供参考。

Abstract: Rapeseed (Brassica napus L.) is the second largest oil crop in the world. And rapeseed meal, the by-product after oil processing, has been considered as a good source for protein and animal forage, which makes rapeseed an useful economic crop. However, the utilization of rapeseed is still limited to the existance of abundant anti-nutritional factors including phenolic compounds, lignin and fibre. Hence, improving the quality of rapeseed with reduced anti-nutritional factors is becoming the primary mission for rapeseed breeders. The phenolic compounds of rapeseed mainly include plant tannins, proanthocyanidins, flavonoids, hydroxycinnamic acid derivatives and glucosinolate. Since proanthocyanidins (PAs) is relevant to the formation of pigments in seed coat, many studies focused on discovering biosynthetic pathway and better quantification of PAs. At the same time, the group of anti-nutritional factors is interrelated to one another, which need to be deeply clarified by further studies in the future, including their synthetic precursors, biosynthetic pathway and molecular mechanisms.

文章引用:邵彦林, 高亚楠, 孔月琴, 王幼平. 甘蓝型油菜种子抗营养物质的研究[J]. 植物学研究, 2013, 2(2): 56-61. http://dx.doi.org/10.12677/BR.2013.22010

参考文献

[1] R. Scarth, J. Tang. Modification of Brassica oil using conven- tional and transgenic approaches. Crop Science, 2006, 46(3): 1225-1236.
[2] C. Batista, L. Barros, A. M. Carvalho and I. C. Ferreira. Nutri- tional and nutraceutical potential of rape (Brassica napus L. var. napus) and “tronchuda” cabbage (Brassica oleraceae L. var. costata) inflorescences. Food and Chemical Toxicology, 2011, 49(6): 1208-1214.
[3] P. Schofield, D. M. Mbugua and A. N. Pell. Analysis of con- densed tannins: A review. Animal Feed Science Technology, 2001, 91(1): 21-40.
[4] F. Shahidi and M. Naczk. An overview of the phenolics of ca- nola and rapeseed: Chemical, sensory and nutritional implica- tions. Journal of American Oil Chemists Society, 1992, 69: 917- 924.
[5] 石碧, 狄莹. 植物多酚[M]. 北京: 科学出版社, 2000: 1-18.
[6] D. Clandinin, J. Heard. Tannins in prepress-solvent and solvent- processed rapeseed meal. Poultry Science, 1968, 47(2): 688-689.
[7] R. Fenwick, S. Hoggan. The tannin content of rapeseed meals. British Poultry Science, 1976, 17: 59-62.
[8] G. R. Fenwick, L. C. Caralyn, A. W. Pearson and E. J. Butler. The treatment of rapeseed meal and its effect on chemical com- position and egg tainting potential. Journal of the Science of Food and Agriculture, 1984, 35(7): 757-761.
[9] M. L. Price, S. Van Scoyoc and L. G. Butler. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agriculture and Food Chemistry, 1978, 26(5): 1214- 1218.
[10] B. N. Mitaru, R. Blair, T. M. Bell and R. D. Reichert. Tannin and fiber contents of rapeseed and canola hulls. Canadian Journal of Animal Science, 1982, 62: 661-663.
[11] M. Naczk, R. Amarowicz, D. Pink and F. Shahidi. Insoluble tan- nins of canola/rapeseed. Journal of Agriculture and Food Chem- istry, 2000, 48(5): 1758-1762.
[12] A. E. Hagerman, M. E. Rice and N. T. Ritchard. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4→8) catechin (procyanidin). Journal of Agricul- ture and Food Chemistry, 1998, 46(7): 2590-2595.
[13] E. C. Bate-Smith, P. Ribereau-Gayon. Qualitas plant. Et Mate- riae Vegetabiles, 1959, 5: 189.
[14] A. B. Durkee. The nature of tannins in rapeseed (Brassica cam- pestris). Phytochemistry, 1971, 10: 1583-1585.
[15] M. Naczk, T. Nichols, D. Pink and F. Sosulski. Condensed tan- nins in canola hulls. Journal of Agriculture and Food Chemistry, 1994, 42(10): 2196-2200.
[16] B. Auger, N. Marnet, V. Gautier, A. Maia-Grondard, F. Leprince, M. Renard, S. Guyot, N. Nesi and R. Jean-Marc. A detailed sur- vey of seed coat flavonoids in developing seeds of Brassica napus L. Journal of Agriculture and Food Chemistry, 2010, 58 (10): 6246-6256.
[17] F. Lipsa, R. Snowdon and W. Friedt. Quantitative genetic analy- sis of condensed tannins in oilseed rape meal. Euphytica, 2012, 184(2): 195-205.
[18] L. J. Porter, L. N. Hrstich and B. G. Chan. The conversion of procyanidins and prodelphinidins to cyanidins and delphindins. Phytochemistry, 1986, 25: 223-230.
[19] L. Lepiniec, I. Debeaujon, J. Routaboul, A. Baudry, L. Pourcel, N. Nesi and M. Caboche. Geneticsand biochemistry of seed fla- vonoids. Annual Review of Plant Biology, 2006, 57: 405-430.
[20] M. C. Wong, P. W. Emery, V. R. Preedy and H. Wiseman. Health benefits of isoflavones in functional foods proteomic and meta- bonomic advances. Inflammopharmacology, 2008, 16(5): 235- 239.
[21] 何兰, 姜志宏. 天然产物资源化学[M]. 北京: 科学出版社, 2008: 340-372.
[22] C. A. Williams, R. J. Grayer. Anthocyanins and other flavonoids. Natural Product Reports, 2004, 21(4): 539-573.
[23] J. Jiang, Y. Shao, A. Li, C. Lu, Y. Zhang and Y. P. Wang. Flavo- noid profiling and gene expression in developing seeds of yel- low- and black-seeded Brassica napus. Journal of Integrative Plant Biology, 2013, in press.
[24] X. Li, N. Westcott, M. Links and M. Y. Gruber. Seed coat phe- nolics and the developing silique transcriptome of Brassica cari- nata. Journal of Agriculture and Food Chemisty, 2010, 58(20): 10918-10928.
[25] R. Khattab, M. Eskin, M. Aliani and U. Thiyam. Determination of sinapic acid derivatives in canola extracts using high-perfor- mance liquid chromatography. Journal of American Oil Chem- ists Society, 2010, 87(2): 147-155.
[26] R. J.Mailer, A. McFadden, J. Ayton and B. Redden. Anti-nutri- tional components, fibre, sinapine and glucosinolate content, in australian canola (Brassica napus L.) meal. Journal of American Oil Chemists Society, 2008, 85(10): 937-944.
[27] S. C. Aleksandra, K. Trokowski, G. Karlovits and E. Szlyk. De- termination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. Journal of Agriculture and Food Chemistry, 2010, 58(13): 7502-7509.
[28] Q. Liu, L. Wu, H. M. Pu, C. Y. Li and Q. H. Hu. Profile and dis- tribution of soluble and insoluble phenolics in chinese rapeseed (Brassica napus L.). Food Chemistry, 2012, 135(2): 616-622.
[29] T. Swain, W. E. Hillis. The phenolic constituents of Prunus do- mestica I. The quantitative analysis of phenolic constituents. Jour- nal of the Science of Food and Agriculture, 1959, 10(1): 63-68.
[30] S. Marles, M. Y. Gruber. Histochemical characterisation of unex- tractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. Journal of Agriculture and Food Che- mistry, 2004, 84(3): 251-262.
[31] F. A. Mascharenhas, J. Kersten and C. H. Cast. The study of several modifications of the neutral detergent fiber procedure. Animal Feed Science Technology, 1983, 9(1): 19-28.
[32] J. K. Daun, D. R. De Clercq. Quality of yellow and dark seeds in Brassica campestris canola varieties Candle and Tobin. Journal of American Oil Chemists Society, 1988, 65: 122-126.
[33] B. A. Slominski, L. D. Campbell and W. Guenter. Carbohydrates and dietary fibre components of yellow and brown seeded canola. Journal of Agriculture and Food Chemistry, 1994, 42(3): 704- 707.
[34] R. Font, D. R. Mercedes, J. M. Fernandez and A. D. Haro. Acid detergent fiber analysis in oilseed Brassicas by near-infrared spec- troscopy. Journal of Agriculture and Food Chemistry, 2003, 51 (10): 2917-2922.
[35] F. T. Zum, A. Baumert, D. Strack, H. C. Becker and C. Mollers. Genetic variation for sinapate ester content in winter rapeseed (Brassica napus L.) and development of NIRS calibration equa- tions. Plant Breeding, 2007, 126(3): 291-296.
[36] B. Wittkop, R. J. Snowdon and W. Friedt. Status and perspec- tives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica, 2009, 170(1-2): 131-140.
[37] B. Wittkop, R. J. Snowdon and W. Friedt. New NIRS calibra- tions for fiber fractions reveal broad genetic variation in Bras- sica napus seed quality. Journal of Agriculture and Food Chem- istry, 2012, 60(9): 2248-2256.
[38] J. J. Jiang, Y. L. Shao, A. M. Li, Y. T. Zhang, C. X. Wei and Y. P. Wang. FTIR and NMR study of seed coat dissected from differ- ent colored progenies of Brassica napus-Sinapis alba hybrids. Journal of Science and Food Agriculture, 2013, in press.
[39] A. G. Badani, R. J. Snowdon, B. Wittkop, F. D. Lispa, R. Baetzel, R. Horn, H. A. De, R. Font, W. Luhs and W. Friedt. Colocaliza- tion of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006, 49(12): 1499-1509.
[40] S. Marles, M. Y. Gruber. Histochemical characterisation of unex- tractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. Journal of Agriculture and Food Che- mistry, 2004, 84(3): 251-262.
[41] B. B. Xu, J. N. Li, X. K. Zhang, R. Wang, L. L. Xie and Y. R. Chai. Cloning and molecular characterization of a functional flavonoid 3’-hydroxylase gene from Brassica napus. Journal of Plant Physiology, 2007, 164(3): 350-363.
[42] Y. R. Chai, B. Lei, H. L. HuangJ. N. Li, J. M. Yin, Z. L. Tan, R. Wang and L Chen. TRANSPARENT TESTA 12 genes from Bras- sica napus and parental species cloning, evolution, and different- tial involvement in yellow seed trait. Molecular Genetics and Genom-ics, 2009, 281(1): 109-123.
[43] Y. Wei, Y. Chai, J. J. Lu, Z. L. Tan, D. C. Pu and J. N. Li. Mo- lecular cloning of Brassica napus TRANSPARENT TESTA2 gene family encoding potential MYB regulatory proteins of proan- thocyanidin biosynthesis. Molecular Biology Reports, 2007, 34(2): 105-120.
[44] L. Liu, A. Stein, B. Wittkop, P. Sarvari, J. Li, X. Yan, F. Dreyer, M. Frauen, W. Friedt and R. J. Snowdon. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theoreti- cal and Applied Genetics, 2012, 124(8): 1573-1586.
[45] Y. L. Wei, J. N. Li, J. LuJ, Z. L. Tang, D. C. Pu and Y. R. Chai. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Molecular Biology Reports, 2007, 34(2): 105-120.
[46] V. S. Bhinu, U. A. Schafer, R. Li, J. Huang and A. Hannoufa. Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Research, 2009, 18(1): 31-44.
[47] S. Wei, X. Li, M. Y. Gruber, R. Li, R. Zhou, A. Zebarjadi and A. Hannoufa. RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. Journal of Agriculture and Food Chemistry, 2009, 57(12): 5326- 5333.