|
[1]
|
Intergovernmental Panel on Climate Change (2014) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
|
|
[2]
|
Kovats, R.S. and Hajat, S. (2008) Heat Stress and Public Health: A Critical Review. Annual Review of Public Health, 29, 41-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Coopers, P.W. (2011) Protecting Human Health and Safety during Severe and Extreme Heat Events: A National Framework Department of Climate Change, Common Wealth Government. https://www.pwc.com.au/publications/pdf/extreme-heat-events-nov11.pdf
|
|
[4]
|
Borden, K.A. and Cutter, S.L. (2008) Spatial Patterns of Natural Hazards Mortality in the United States. International Journal of Health Geographics, 7, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kjellstrom, T., Briggs, D., Freyberg, C., Lemke, B., Otto, M. and Hyatt, O. (2016) Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts. Annual Review of Public Health, 37, 97-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ott, W.R., Steinemann, A.C. and Wallace, L.A. (2006) Exposure Analysis. CRC Press.
|
|
[7]
|
Kuras, E.R., Richardson, M.B., Calkins, M.M., Ebi, K.L., Hess, J.J., Kintziger, K.W., et al. (2017) Opportunities and Challenges for Personal Heat Exposure Research. Environmental Health Perspectives, 125, Article ID: 085001. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Corburn, J. (2009) Cities, Climate Change and Urban Heat Island Mitigation: Localising Global Environmental Science. Urban Studies, 46, 413-427. [Google Scholar] [CrossRef]
|
|
[9]
|
Bernard, T.E. and Kenney, W.L. (1994) Rationale for a Personal Monitor for Heat Strain. AIHAJ, 55, 505-514. [Google Scholar] [CrossRef]
|
|
[10]
|
刘君男, 陈天, 王柳璎. 气候变化视角下的高密度城市热健康风险识别、评估与城市设计干预——以澳门为例[J/OL]. 国际城市规划: 1-14. 2024-02-03.[CrossRef]
|
|
[11]
|
Kim, J., Schiavon, S. and Brager, G. (2018) Personal Comfort Models—A New Paradigm in Thermal Comfort for Occupant-Centric Environmental Control. Building and Environment, 132, 114-124. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhang, F., de Dear, R. and Hancock, P. (2019) Effects of Moderate Thermal Environments on Cognitive Performance: A Multidisciplinary Review. Applied Energy, 236, 760-777. [Google Scholar] [CrossRef]
|
|
[13]
|
Veselý, M. and Zeiler, W. (2014) Personalized Conditioning and Its Impact on Thermal Comfort and Energy Performance—A Review. Renewable and Sustainable Energy Reviews, 34, 401-408. [Google Scholar] [CrossRef]
|
|
[14]
|
Buller, M.J., Welles, A.P. and Friedl, K.E. (2018) Wearable Physiological Monitoring for Human Thermal-Work Strain Optimization. Journal of Applied Physiology, 124, 432-441. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
黄存瑞, 何依伶, 马锐, 等. 高温热浪的健康效应: 从影响评估到应对策略[J]. 山东大学学报(医学版), 2018, 56(8): 14-20.
|
|
[16]
|
Dias, D. and Paulo Silva Cunha, J. (2018) Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors, 18, Article e2414. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Anderson, V., Leung, A.C.W., Mehdipoor, H., Jänicke, B., Milošević, D., Oliveira, A., et al. (2021) Technological Opportunities for Sensing of the Health Effects of Weather and Climate Change: A State-of-the-Art-Review. International Journal of Biometeorology, 65, 779-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jayathissa, P., Quintana, M., Sood, T., Nazarian, N. and Miller, C. (2019) Is Your Clock-Face Cozie? A Smartwatch Methodology for the In-Situ Collection of Occupant Comfort Data. Journal of Physics: Conference Series, 1343, Article ID: 012145. [Google Scholar] [CrossRef]
|
|
[19]
|
Cosma, A.C. and Simha, R. (2018) Thermal Comfort Modeling in Transient Conditions Using Real-Time Local Body Temperature Extraction with a Thermographic Camera. Building and Environment, 143, 36-47. [Google Scholar] [CrossRef]
|
|
[20]
|
van Eck, N.J. and Waltman, L. (2014) Visualizing Bibliometric Networks. In: Ding, Y., Rousseau, R. and Wolfram, D., Eds., Measuring Scholarly Impact, Springer International Publishing, 285-320. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhang, J., Yu, Q., Zheng, F., Long, C., Lu, Z. and Duan, Z. (2015) Comparing Keywords Plus of WOS and Author Keywords: A Case Study of Patient Adherence Research. Journal of the Association for Information Science and Technology, 67, 967-972. [Google Scholar] [CrossRef]
|
|
[22]
|
童世庐. 应对气候变化, 保障人群健康——“气候变化与人群健康”专栏之序[J]. 环境与职业医学, 2020, 37(1): 1-2.
|
|
[23]
|
Simpson, N.P., Mach, K.J., Constable, A., Hess, J., Hogarth, R., Howden, M., et al. (2021) A Framework for Complex Climate Change Risk Assessment. One Earth, 4, 489-501. [Google Scholar] [CrossRef]
|
|
[24]
|
WHO (World Health Organization) (2004) International Statistical Classification of Diseases and Related Health Problems, 10th Revision (Vol. 1).
|
|
[25]
|
Eck, N.J.v. and Waltman, L. (2009) How to Normalize Cooccurrence Data? An Analysis of Some Well‐Known Similarity Measures. Journal of the American Society for Information Science and Technology, 60, 1635-1651. [Google Scholar] [CrossRef]
|
|
[26]
|
Gronlund, C.J. (2014) Racial and Socioeconomic Disparities in Heat-Related Health Effects and Their Mechanisms: A Review. Current Epidemiology Reports, 1, 165-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jazizadeh, F., Ghahramani, A., Becerik-Gerber, B., Kichkaylo, T. and Orosz, M. (2014) Human-Building Interaction Framework for Personalized Thermal Comfort-Driven Systems in Office Buildings. Journal of Computing in Civil Engineering, 28, 2-16. [Google Scholar] [CrossRef]
|
|
[28]
|
Havenith, G. (2001) Individualized Model of Human Thermoregulation for the Simulation of Heat Stress Response. Journal of Applied Physiology, 90, 1943-1954. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chan, N., Stacey, M., Smith, A., Ebi, K. and Wilson, T. (2001) An Empirical Mechanistic Framework for Heat-Related Illness. Climate Research, 16, 133-143. [Google Scholar] [CrossRef]
|
|
[30]
|
Rupp, R.F., Vásquez, N.G. and Lamberts, R. (2015) A Review of Human Thermal Comfort in the Built Environment. Energy and Buildings, 105, 178-205. [Google Scholar] [CrossRef]
|
|
[31]
|
陈倩, 丁明军, 杨续超, 等. 长江三角洲地区高温热浪人群健康风险评价[J]. 地球信息科学学报, 2017, 19(11): 1475-1484.
|
|
[32]
|
Basu, R. (2002) Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence. Epidemiologic Reviews, 24, 190-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Napoli, C.D., et al (2020) ERA5-HEAT: A Global Gridded Historical Dataset of Human Thermal Comfort Indices from Climate Reanalysis. Geoscience Data Journal, 8, 2-10.
|
|
[34]
|
Chapman, L., Bell, C. and Bell, S. (2016) Can the Crowdsourcing Data Paradigm Take Atmospheric Science to a New Level? A Case Study of the Urban Heat Island of London Quantified Using Netatmo Weather Stations. International Journal of Climatology, 37, 3597-3605. [Google Scholar] [CrossRef]
|
|
[35]
|
Meier, F., Fenner, D., Grassmann, T., Otto, M. and Scherer, D. (2017) Crowdsourcing Air Temperature from Citizen Weather Stations for Urban Climate Research. Urban Climate, 19, 170-191. [Google Scholar] [CrossRef]
|
|
[36]
|
Chen, C., Hu, Z., Liu, S. and Tseng, H. (2012) Emerging Trends in Regenerative Medicine: A Scientometric Analysis in CiteSpace. Expert Opinion on Biological Therapy, 12, 593-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
霍童, 张序, 周云, 等. 基于暴露-敏感-适应性模型的生态脆弱性时空变化评价及相关分析——以中国大运河苏州段为例[J]. 生态学报, 2022, 42(6): 2281-2293.
|
|
[38]
|
Ren, B.P. and Li, Y. (2018) Construction and Transformation Path of China’s High Quality Development Evaluation System in New Era. Journal of Shaanxi Normal University (Philosophy and Social Sciences Edition), 47, 105-113.
|
|
[39]
|
Jin, Y. (2018) Economic Research on “High Quality Development”. China’s Industrial Economy, 361, 12-25
|
|
[40]
|
Li, J.C., Shi, L.M. and Xu, A.T. (2019) Discussion on Evaluation Index System for High Quality Development. Statistical Research, 36, 4-14.
|
|
[41]
|
Hong, B., Lin, B., Hu, L. and Li, S. (2011) Optimal Tree Design for Sunshine and Ventilation in Residential District Using Geometrical Models and Numerical Simulation. Building Simulation, 4, 351-363. [Google Scholar] [CrossRef]
|
|
[42]
|
Hong, B. and Lin, B. (2014) Numerical Study of the Influences of Different Patterns of the Building and Green Space on Micro-Scale Outdoor Thermal Comfort and Indoor Natural Ventilation. Building Simulation, 7, 525-536. [Google Scholar] [CrossRef]
|
|
[43]
|
Wu, Z., Kong, F., Wang, Y., Sun, R. and Chen, L. (2016) The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China. International Journal of Environmental Research and Public Health, 13, Article 1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hong, B. and Lin, B. (2015) Numerical Studies of the Outdoor Wind Environment and Thermal Comfort at Pedestrian Level in Housing Blocks with Different Building Layout Patterns and Trees Arrangement. Renewable Energy, 73, 18-27. [Google Scholar] [CrossRef]
|
|
[45]
|
谢盼, 王仰麟, 刘焱序, 等. 基于社会脆弱性的中国高温灾害人群健康风险评价[J]. 地理学报, 2015, 70(7): 1041-1051.
|
|
[46]
|
Chen, L. and Ng, E. (2013) Simulation of the Effect of Downtown Greenery on Thermal Comfort in Subtropical Climate Using PET Index: A Case Study in Hong Kong. Architectural Science Review, 56, 297-305. [Google Scholar] [CrossRef]
|
|
[47]
|
Yan, H. and Dong, L. (2015) The Impacts of Land Cover Types on Urban Outdoor Thermal Environment: The Case of Beijing, China. Journal of Environmental Health Science and Engineering, 13, 1-7.
|
|
[48]
|
Su, X., Cai, H., Chen, Z. and Feng, Q. (2017) Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses. Sustainability, 9, Article 1656. [Google Scholar] [CrossRef]
|
|
[49]
|
Tan, Z., Lau, K.K. and Ng, E. (2016) Urban Tree Design Approaches for Mitigating Daytime Urban Heat Island Effects in a High-Density Urban Environment. Energy and Buildings, 114, 265-274. [Google Scholar] [CrossRef]
|
|
[50]
|
武巍, 周龙, 刘钰等. 应对城市热岛效应的公园系统布局及优化研究——以高密度城市澳门为例[J/OL]. 复旦学报(自然科学版): 1-10. 2024-02-03. [Google Scholar] [CrossRef]
|
|
[51]
|
Yang, X. and Zhao, L. (2015) Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City. Buildings, 6, Article 2. [Google Scholar] [CrossRef]
|
|
[52]
|
Zheng, S., Zhao, L. and Li, Q. (2016) Numerical Simulation of the Impact of Different Vegetation Species on the Outdoor Thermal Environment. Urban Forestry & Urban Greening, 18, 138-150. [Google Scholar] [CrossRef]
|
|
[53]
|
梁娟, 蔺银鼎. 城市森林对周边小气候时空格局的影响[J]. 中国农学通报, 2007, 23(7): 379-385.
|
|
[54]
|
Zhang, A., Bokel, R., van den Dobbelsteen, A., Sun, Y., Huang, Q. and Zhang, Q. (2017) An Integrated School and Schoolyard Design Method for Summer Thermal Comfort and Energy Efficiency in Northern China. Building and Environment, 124, 369-387. [Google Scholar] [CrossRef]
|
|
[55]
|
Cheung, P.K. and Jim, C.Y. (2018) Comparing the Cooling Effects of a Tree and a Concrete Shelter Using PET and UTCI. Building and Environment, 130, 49-61. [Google Scholar] [CrossRef]
|
|
[56]
|
Rui, L., Buccolieri, R., Gao, Z., Ding, W. and Shen, J. (2018) The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests, 9, Article 224. [Google Scholar] [CrossRef]
|
|
[57]
|
Wang, X., Li, Y., Yang, X., Chan, P.W., Nichol, J. and Li, Q. (2018) The Street Air Warming Phenomenon in a High-Rise Compact City. Atmosphere, 9, Article 402. [Google Scholar] [CrossRef]
|
|
[58]
|
Xu, X., Sun, S., Liu, W., García, E.H., He, L., Cai, Q., et al. (2017) The Cooling and Energy Saving Effect of Landscape Design Parameters of Urban Park in Summer: A Case of Beijing, China. Energy and Buildings, 149, 91-100. [Google Scholar] [CrossRef]
|