三峡水库提前蓄水方案的优化选择
Optimal Scheme of Early Refill Operation for the Three Gorges Reservoir
DOI: 10.12677/JWRR.2013.23023, PDF, HTML, 下载: 3,076  浏览: 8,602  国家自然科学基金支持
作者: 李 雨*, 郭生练*, 李天元, 周研来:武汉大学水资源与水电工程科学国家重点实验室
关键词: 三峡水库提前蓄水蓄水方案优化选择 Three Gorges Reservoir; Early Refill; Refill Scheme; Optimal Selection
摘要: 应用Copula函数构建了联合分布及条件概率分布,通过随机抽样方法模拟得到三峡水库9月份随机入库流量序列。建立了提前蓄水方案优选模型,计算并分析了8月下旬不同来水情景下,三峡水库9月份提前蓄水方案的优化选择。研究结果表明:若8月下旬来水为丰水,则9月下旬起蓄,月底均匀蓄水至166 m,较原设计方案,在不增加防洪风险的前提下,多年平均发电量可增加1.57亿kWh (1.46%),弃水量减小10.72亿m3 (12.89%);若来水为平水,则9月中旬起蓄,月底均匀蓄水至166 m,较原设计方案,在不增加防洪风险的前提下,多年平均发电量可增加3.45亿kWh (3.40%),弃水量减小22.59亿m3 (34.19%);若来水为枯水,通过加强实时监测,则可进一步提前至9月上旬起蓄,月底均匀蓄水至166 m,较原设计方案,在基本不增加防洪风险的前提下,多年平均发电量可增加5.50亿kWh (6.12%),弃水量减小19.18亿m3 (51.89%)
Abstract: A joint distribution function and conditional probability distribution of this samples using copula was built and inflow series in September were obtained by stochastic simulation method. Furthermore, a refill operation optimization model of the Three Gorges Reservoir was established in this paper to derive the optimal refill scheme. The results show that the optimal refill scheme depends on the reservoir inflow in late August. In the wet year, refill begins in late September with storage level reaching 166 m on September 30 linearly. Comparing with designed scheme, the scheme can generate extra about 1.57 × 108 kW·h electrical energy (by 1.46%) and save 10.72 × 108 m3 water resources (by 12.89%) annually without increasing the flood control risk; In the normal year, refill begins in middle September with storage level reaching 166 m on September 30 linearly. Comparing with designed scheme, the scheme can generate extra about 3.45 × 108 kW·h electrical energy (by 3.40%) and save 22.59 × 108 m3 water resources (by 34.19%) annually without increasing the flood control risk; In the dry year, refill begins in early September with storage level reaching 166 m on September 30 linearly by strengthening real-time monitoring. Comparing with designed scheme, the scheme can generate extra about 5.50 × 108 kW·h electrical energy (by 6.12%) and save 19.18 × 108 m3 water resources (by 51.89%) annually without increasing the flood control risk.
文章引用:李雨, 郭生练, 李天元, 周研来. 三峡水库提前蓄水方案的优化选择[J]. 水资源研究, 2013, 2(3): 157-164. http://dx.doi.org/10.12677/JWRR.2013.23023

参考文献

[1] 郑守仁. 三峡工程设计水位175 m试验性蓄水运行的相关问题思考[J]. 人民长江, 2011, 42(13): 1-7. ZHENG Shouren. Some considerations on related problems in pilot impoundment of TGP at design water level of 175 m. Yangtze River, 2011, 42(13): 1-7. (in Chinese)
[2] 闵要武, 张俊, 邹红梅. 基于来水保证率的三峡水库蓄水调度图研究[J]. 水文, 2011, 31(3): 27-30. MIN Yaowu, ZHANG Jun and ZOU Hongmei. Research on impounding schemes for the Three Gorges Reservoir based on inflow guaranteed frequency. Journal of Hydrology, 2011, 31(3): 27-30. (in Chinese)
[3] 彭杨, 李义天, 张红武. 三峡水库汛末蓄水时间与目标决策研究[J]. 水科学进展, 2003, 14(6): 682-689. PENG Yang, LI Yitian and ZHANG Hongwu. Study on the impounding time and objective decision of the Three Gorges Reservoir at the end of flood period. Advances in Water Science, 2003, 14(6): 682-689. (in Chinese)
[4] 李义天, 甘富万, 邓金运. 三峡水库9月分旬控制蓄水初步研究[J]. 水力发电学报, 2006, 25(1): 61-66. LI Yitian, GAN Fuwan and DENG Jinyun. Preliminary study on impounding water of Three Gorges Project in September. Journal of Hydroelectric Engineering, 2006, 25(1): 61-66. (in Chinese)
[5] 刘攀, 郭生练, 庞博, 等. 三峡水库运行初期蓄水调度函数的神经网络模型研究及改进[J]. 水力发电学报, 2006, 25(2): 83-89. LIU Pan, GUO Shenglian, PANG Bo, et al. A modified approach for deriving storage operating rules of the Three Gorges reservoir with artificial neural network. Journal of Hydroelectric Engineering, 2006, 25(2): 83-89. (in Chinese)
[6] 邓金运, 李义天, 陈建, 等. 泥沙淤积对三峡水库9月分旬蓄水的影响[J]. 水力发电学报, 2008, 27(3): 110-114. DENG Jinyun, LI Yitian, CHEN Jian, et al. Preliminary study on impounding water of Three Gorges Project in September. Journal of Hydraulic Engineering, 2008, 27(3): 110-114. (in Chinese)
[7] 刘心愿, 郭生练, 刘攀, 等. 考虑综合利用要求的三峡水库提前蓄水方案[J]. 水科学进展, 2009, 20(6): 851-856. LIU Xinyuan, GUO Shenglian, LIU Pan, et al. Scheme of im-pounding in advance for the Three Gorges Reservoir by considering the comprehensive utilization benefits. Advance in Water Science, 2009, 20(6): 851-856. (in Chinese)
[8] 水利部. 三峡水库优化调度方案[R], 2009. The Ministry of Water Resources of People’s Republic of China. Scheme of optimal operation for the Three Gorges Reservoir, 2009. (in Chinese)
[9] 张娟, 张艾东, 蔡治国. 三峡水库汛期分期成因分析与模型计算[J]. 人民长江, 2008, 39(18): 4-5. ZHANG Juan, ZHANG Aidong and CAI Zhiguo. Hydrological genetic analysis and model calculation of division of flood period for the Three Gorges Reservoir. Yangtze River, 2008, 39(18): 4-5. (in Chinese)
[10] XIONG, L. H., GUO, S. L. Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station. Hydrological Sciences Journal 2004, 49(1): 99-112.
[11] 肖义, 郭生练, 熊立华, 等. 一种新的洪水过程随机模拟方法研究[J]. 四川大学学报(工程科学版), 2007, 39(2): 55-60. XIAI Yi, GUO Shenglian, XIONG Lihua, et al. A new random simulation method for constructing synthetic flood hydrographs. Journal of Sichuan University (Engineering Science Edition), 2007, 39(2): 55-60. (in Chinese)
[12] 水利部. 水利水电工程水文计算规范SL278—2002[S]. 北京: 水利水电出版社, 2002. The Ministry of Water Resources of People’s Republic of China. Standard for hydrological information and hydrological forecasting (SL278—2002), 2002. (in Chinese)
[13] 李雨, 郭生练, 郭海晋, 等. 三峡水库提前蓄水的防洪风险与效益分析[J]. 长江科学院院报, 2013, 30(1): 8-14. LI Yu, GUO Shenglian, GUO Haijin, et al. Flood control risk and benefit of impounding water in advance for the Three Gorges Reservoir. Journal of Yangtze River Scientific Research Institute, 2013, 30(1): 8-14. (in Chinese)