PLD制备Mn掺杂ZnO薄膜的光学性能和快速红外光伏响应研究
Fast Infrared Photovoltaic Responses of Mn Doped ZnO Thin Films Synthesized by PLD Method
DOI: 10.12677/APP.2013.34017, PDF, HTML, 下载: 3,274  浏览: 8,871  国家自然科学基金支持
作者: 赵嵩卿, 赵 昆:中国石油大学(北京)理学院,北京;黄 春, 闫坤坤:中国石油大学(北京)理学院,北京;中国科学院微电子研究所,北京;王文东:中国科学院微电子研究所,北京
关键词: PLDMn掺杂ZnO薄膜红外光伏响应 PLD; Mn Doping ZnO Thin Film; Infrared Photovoltaic Response
摘要: 使用脉冲激光沉积(PLD)方法在融石英基底上生长不同Mn掺杂量的ZnO薄膜。XRD测试表明,Mn掺杂的ZnO薄膜为六方纤锌矿结构,具有明显的(002)方向择优生长,Mn2+以取代原子的形式存在于ZnO薄膜中,Mn2+掺入后导致了晶格膨胀。薄膜吸收光谱的测试显示出Mn的掺杂改变了ZnO薄膜的禁带宽度,从而改变了ZnO薄膜对光的吸收能力。薄膜具有快速响应的红外光伏效应,其红外光伏信号随激光能量的增加而线性增大,随Mn掺杂量的增多也增大。
Abstract: ZnO thin films with different Mn doping amounts were prepared on fused quartz substrate by pulsed laser deposition (PLD) method. XRD test showed that the Mn doped ZnO films were hexagonal wurtzite and had mainly (002) peaks. Mn2+ was a substitution of Zn2+ in the films, which led to lattice expansion. Absorption spectrum revealed that Mn doping changed the band gap of the films, and furthermore changed the absorption ability of the ZnO films. The films also had fast infrared photovoltaic responses, which increased with the increase of the laser energy and the Mn content.

文章引用:赵嵩卿, 黄春, 闫坤坤, 赵昆, 王文东. PLD制备Mn掺杂ZnO薄膜的光学性能和快速红外光伏响应研究[J]. 应用物理, 2013, 3(4): 87-90. http://dx.doi.org/10.12677/APP.2013.34017

参考文献

[1] C. E. Johnson, W. A. Weimer and D. C. Harris. Characterization of diamond films by thermogravimetric analysis and infrared spectros-copy. Materials Research Bulletin, 1989, 24(9): 1127- 1134.
[2] K. W. Liu, J. G. Ma, J. Y. Zhang, et al. Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film. Solid-State Electronics, 2007, 51(5): 757-761.
[3] S. Chu, M. Olmedo, Z. Yang, J. Kong and J. Liu. Electrically pumped ultraviolet ZnO diode lasers on Si. Applied Physics Letters, 2008, 93(18): 181106.
[4] D.-K. Hwang, M.-S. Oh, J.-H. Lim, Y.-S. Choi and S.-J. Park. ZnO-based light-emitting metal-insulator-semiconductor diodes. Applied Physics Letters, 2007, 91(12): 121113.
[5] B. J. Lokhande, P. S. Patil and M. D. Uplane. Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Physica B, 2001, 302-303: 59-63.
[6] G. Shen, J. H. Cho, J. K. Yoo, G.-C. Yi and C. J. Lee. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires. Journal of Physical Chemistry B, 2005, 109(12): 5491-5496.
[7] R. Al Asmar, S. Juillaguet, M. Ramonda, et al. Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam coevaporation technique. Journal of Crystal Growth, 2005, 275(3-4): 512-520.
[8] P. Sharma, A. Gupta, K. V. Rao, et al. Ferro-magnetism above room temperature in bulk and transparent thin films of Mn doped ZnO. Nature Materials, 2003, 2(10): 673-677.
[9] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth, 2001, 225(2-4): 110-113.
[10] T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita and Y. Horikoshi. ZnO MSM photodetectors with Ru contact elec-trodes. Journal of Crystal Growth, 2005, 281(2-4): 513-517.
[11] J. L. Liu, F. X. Xiu, L. J. Mandalapu and Z. Yang. P-type ZnO by Sb doping for PN-junction photodetectors. Proceedings of SPIE, the International Society for Optical Engineering, 2006, 6122: 61220H.1-61220H.