介孔分子筛SBA-15固定化脂肪酶性质的研究
Immobilization of Lipase on Mesoporous SBA-15 and Its Characterization
DOI: 10.12677/nat.2011.11006, PDF, HTML, XML, 下载: 3,485  浏览: 12,580  科研立项经费支持
作者: 刘春艳*, 王晓博, 刘加乐, 王素艳:辽宁师范大学化学化工学院
关键词: 介孔分子筛SBA-15固定化酶酶活稳定性
SBA-15; Immobilized Lipase; Relative Activity; Stability
摘要: 本文以介孔分子筛SBA-15为载体采用吸附法对假单胞菌脂肪酶进行了固定化,研究了固定化条件对酶的活性及酶活回收率的影响,得到了最佳固定化条件。并对固定化酶的稳定性(pH、操作稳定性以及储藏稳定性)做了初步研究。结果表明:当载体为1 g,给酶量为50 mg,固定化时间为3 h,溶液的pH值为8.0时,假单胞菌脂肪酶的固定化效果最好,此时酶活力回收率达到60%左右。固定化酶的稳定性较游离酶有很大提高。研究结果表明介孔材料SBA-15是脂肪酶进行固定化的一个优良载体。
Abstract: Lipase was immobilized on the mesoporous molecular sieve SBA-15 by physical adsorption method. The effects of immobilization conditions on the relative activity and the activity yield of the immobilized lipase were studied. At the same time the pH, operational and storage stability of the immobilized lipase was discussed. The results showed that the optimum conditions for immobilization were as follows: the mass of the carrier, the mass of the free enzyme, time and pH were 1 g. 50 mg, 3.0 h and 8.0, respectively. Under the optimum condition, the activity yield of the immobilized lipase was around 60%. The immobilized lipase showed a good stability compared with the free enzyme. The results showed that the mesoporous molecular sieve SBA-15 is an excellent carrier for the immobilization of lipase.
文章引用:刘春艳, 王晓博, 刘加乐, 王素艳. 介孔分子筛SBA-15固定化脂肪酶性质的研究[J]. 纳米技术, 2011, 1(1): 27-33. http://dx.doi.org/10.12677/nat.2011.11006

参考文献

[1] 邹国林, 朱汝璠. 酶学[M]. 武汉: 武汉大学出版社, 1997: 13-15.
[2] S. M. O. Van Dyck, G. L. F. Lemière, T. H. M. Jonckers., et al. Kinetic resolution of a dihydrobenzofuran-type neolignan by lipase-catalysed acetylation. Tetrahedron Asymmetry, 2001, 12(5): 785-789.金杰, 杨艳红, 吴克等. 二氧化硅纳米材料固定中性脂肪酶的条件优化及其特性[J]. 生物工程学报, 2009, 25(12): 2003-2007.
[3] 刘春雷, 于殿宇, 屈岩峰等. 吸附-交联法固定化脂肪酶的研究[J]. 食品工业科技, 2008, 29(6), 104-106.
[4] 徐佳音, 张弛, 宋锡瑾等. 荧光标记脂肪酶的固定化及其稳定性[J]. 生物工程学报, 2010, 26 (1): 100-107.
[5] 王章存, 魏翠平, 王瑛瑶等. 脂肪酶固定化研究及应用初探[J]. 食品工业科技, 2010, 31(5), 174-177.
[6] 王建龙, 谢文磊. 固定化脂肪酶催化酯交换制备生物柴油的研究进展[J]. 四川化工, 2010, 13(4), 23-26.
[7] 张宝华, 潜飞, 叶俊丹等. 脂肪酶的固定化及其催化合成生物柴油[J]. 石油化工, 2009, 38(12), 1336-1341.
[8] 邓欣, 曾虹燕, 冯波. 固定脂肪酶催化制备生物柴油条件优化[J]. 天然产物研究与开发, 2008, 20(1), 113-116.
[9] 陈秀琳. 脂肪酶固定化的研究概况[J]. 海峡药学, 2007, 19(12), 114-116.
[10] J. Deere, E. Magner, J. G. Wall, et al. Adsorption and activity of cytochrome c on mesoporous silicates. Chem Commun, 2001, 5: 465-465.
[11] H. Takahashi, B. Li, T. Sasaki, et al. Catalytic Activity in Organic Solvents and Stability of Immobilized Enzymes Depend on the Pore Size and Surface Characteristics of Mesoporous Silica. Chem. Mater, 2000, 12(11): 3301-3305.
[12] 高波, 朱广山, 傅学奇等. 介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究[J]. 高等学校化学学报, 2003, 24(6): 1100-1102.
[13] 赵起龙, 沈健, 袁兴东等. 介孔分子筛SBA-15的研究进展[J]. 广州化工, 2005, 33(1): 12-15.
[14] D. Zhao, J. Feng, Q. Huo, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998, 279(5350): 548-552.
[15] 纪建业. 脂肪酶活力测定方法的改进[J]. 通化师范学院学报, 2005, 26(6): 51-53.
[16] K. K. Kim, H. K. Song, D. H. Shin, et al. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure, 1997, 5(2): 173-185.