贵州高原淡水湖泊水体富营养化参数间关联性分析
The Related Analysis about Eutrophication Parameters of Freshwater Lake in Guizhou Plateau
DOI: 10.12677/IJE.2013.23005, PDF, HTML, XML, 下载: 3,074  浏览: 9,469 
作者: 向发云:贵阳市两湖一库环境保护监测站,贵阳
关键词: 淡水富营养化参数关联性 Freshwater; Eutrophication; Parameters; Relevance
摘要:

采用Microsoft Excel工作表和SPSS19.0软件Pearson相关性分析,统计2003年至2009年红枫湖水质监测数据,分析富营养化参数Chla、TP、TN、SD、CODMn与pH七年的存在量变化及各参数间的相关性。结果表明:1) Chla年均含量逐渐增加,TN浓度年均值在1.58 mg/L~3.39 mg/L、TP浓度年均值在0.07 mg/L~0.55 mg/L,超III类饮水标准;2) Chla含量与SD负相关,与pH、CODMn显著正相关,CODMn与pH呈极显著正相关,这与水体中浮游藻类的大量生长,悬浮物增加,水体中碳酸盐平衡系统被打破有关;3) Chla含量与TN显著负相关,与TP无明显相关性,TP、TN浓度显著负相关,这可能与水体水质的特殊性,水体中TP、TN浓度过高,水体营养物质丰富,浮游藻类的生长不再受其限制有关。

Using Microsoft Excel worksheet and Pearson correlation analysis of SPSS19.0 software, we counted monitoring data of Hong Feng Lake from 2003 to 2009, analysed the changes of eutrophication parameters Chla, TP, TN, SD, CODMn and pH in seven years, and then analysed their correlations. The results showed that: 1) The content of Chla increased every year, the annual average concentration of TN changed from 1.58 mg/L to 3.39 mg/L, the annual average concentration of TP changed from 0.07 mg/L to 0.55 mg/L, and the average concentration of TP supered III drinking water standards; 2) Chla negatively correlated with SD, significantly positive correlated with pH and CODMn, CODMn and pH were positively correlated highly, and all these correlations were due to that a lot of algae grew in water, suspended solids increased, and carbonate equilibrium system was broken; 3) Chla and TN were negatively correlated; Chla and TP had no significant correlation, and TP and TN were negatively correlated, which might be related to the growth of Planktonic algae which was no longer constrained to the special characteristics of Hongfeng lake, the too high concentration of TP and TN, and the rich nutrients.

Abstract:

文章引用:向发云. 贵州高原淡水湖泊水体富营养化参数间关联性分析[J]. 世界生态学, 2013, 2(3): 27-31. http://dx.doi.org/10.12677/IJE.2013.23005

参考文献

[1] 梁婕, 曾光明, 郭生练等. 湖泊及水库富营养化模型研究综[J]. 环境污染治理技术与设备, 2003, 7(6): 24-30.
[2] 田永杰, 唐志坚, 李世斌. 我国湖泊富营养化的现状和治理对策[J]. 环境科学与管理, 2006, 31(5): 119-121.
[3] 杨龙. 密云水库富营养化阈值与外源磷素输入响应关系研究[D]. 首都师范大学, 2009.
[4] R. J. Livingston. Eutrophication processes in coastal systems: Origin and succession of plankton blooms and effects on secondary production in gulf coast estuaries. Boca Raton: CRC Press, 2002: 145-147.
[5] 朱新源, 陈淑云, 汤大友等. 官厅水库富营养化的水生生态特征评价[J]. 环境科学学报, 1991, 11(3): 292-298.
[6] 谢礼国, 郑怀礼. 湖泊富营养化的防治对策研究[J]. 世界科技研究与发展, 2004, 26(2): 7-11.
[7] 詹苏, 杨大鹏. 红枫湖水体的富营养化特征评价[J]. 贵州农业科学, 2012, 40(10): 200-203.
[8] 叶峰, 张明时, 刘汉林等. 红枫湖水库底质污染物富集现状分析[J]. 水资源保护, 2010, 26(3): 8-12.
[9] 许海, 刘兆普, 袁兰等. pH对几种淡水藻类生长的影响[J]. 环境科学与技术, 2009, 32(1): 27-30.
[10] 国家环境保护总局编委会. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
[11] 丰茂武, 吴云海, 冯仕训等. 不同氮磷比对藻类生长的影响[J]. 生态环境, 2008, 17(5): 1759-1763.
[12] 王长娥. 贵州省红枫湖、百花湖和阿哈水库污染源的现状调查、分析与评价[D]. 贵州师范大学, 2009.
[13] P. Dufour, B. Berland. Nutrient control of phytoplanktonic biomass in atoll lagoons and Pacific Ocean waters: Studies with factorial enrichment bioassays. Journal of Experimental Marine Biology and Ecology, 1999, 234: 147-166.
[14] E. V. Hulle-busch, V. Deluchat, P. M. Chazal, et al. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part II. Case of copper sulfate. Environmental Pollution, 2002, 120: 627-634.
[15] 王雨春, 万国江, 黄荣贵等. 红枫湖、百花湖沉积物全氮、可交换态氮和固定銨的赋存特征[J]. 湖泊科学, 2002, 14(4): 301-308.
[16] 晏妮. 贵州两种类型喀斯特水库浮游植物分布与富营养化特征比较研究[D]. 贵州师范大学, 2006.
[17] 邓河霞, 夏品华, 林陶等. 贵州高原红枫湖水库叶绿素a浓度的时空分布及其与环境因子关系[J]. 农业环境科学学报, 2011, 30(8): 1630-1637.