机器人钻削三位力反馈表面接触滑移抑制
Robotic Three-dot Force Feedback to Suppress Surface Contact Slipping in Robot Drilling
DOI: 10.12677/MET.2013.23018, PDF, HTML,  被引量 下载: 3,300  浏览: 7,953  科研立项经费支持
作者: 李晨杰*, 姚俊:沈阳理工大学,沈阳;李树强, 屈润鑫:中国科学院沈阳自动化研究所,沈阳;朱思俊:中国科学院沈阳自动化研究所扬州工程技术研究中心,扬州
关键词: 工业机器人机器人钻削力反馈表面接触滑移Industrial Robots; Robot Drilling; Force Feedback; Surface Contact Slipping
摘要: 相对与传统机床,工业机器人的刚度较低。在使用工业机器人进行钻削时,很容易产生振动。当钻头与工作表面接触时,这种振动将导致钻头沿工件表面滑移,影响成孔质量,孔位置精度达不到要求,以致钻削失败。本文提出一种基于力反馈的方法来抑制表面滑移。该方法利用力传感器反馈机器人运动学,使钻头与工件表面保持垂直,以抑制滑移。仿真分析表明,该方法可有效改善成孔质量,满足钻削要求。
Abstract: Compared with the machine tools, the stiffness of industrial robots is lower. Therefore, in the drilling of in- dustrial robots, vibration occurred easily. The vibration can generate a slipping effect when the drilling tool touches the workpiece, which affects the quality of the drilled holes, the holes’ precision can not meet requirement and results in the failure of drilling. This paper presents a method based on three-dot-force feedback, which can suppress the Surface Contact Slipping (SCS). The method makes feedback to the robot kinematics using three force sensors, keeping the drilling tool normal with the workpiece surface to suppress SCS. Through the simulation analysis, the method can ef-fectively improve the quality of the drilled holes and fulfill the aim of drilling.
文章引用:李晨杰, 李树强, 屈润鑫, 朱思俊, 姚俊. 机器人钻削三位力反馈表面接触滑移抑制[J]. 机械工程与技术, 2013, 2(3): 92-98. http://dx.doi.org/10.12677/MET.2013.23018

参考文献

[1] 毕树生, 宗光华, 梁杰. 机器人技术于航空制造业[J]. 机器人技术与应用, 2009, 3: 25-31.
[2] E. Whinnem, M. Nystrom. Integrated metrology & robotics sys- tems for agile automation. SAE Technical Paper, 2000, 1: 4271- 4279.
[3] T. Olsson, M. Haage, H. Kihlman, et al. Cost-efficient drilling using industrial robots with high-bandwidth force feedback. Ro- botics and Computer-Integrated Manufacturing, 2010, 26(1): 24- 38.
[4] D. Russell, S. Kevin and I. John. ONCE (one sided cell end effe- ctor) robotic drilling system. SAE Automated Fas-tening Con- ference & Exhibition, New Applications for Automation Tech- nologies, 2002.
[5] R. Devlieg. High-accuracy robotic drill-ing/milling of 737in- board flaps. SAE International Journal of Aero-space, 2011, 4(2): 1373-1379.
[6] T. Olsson, A. Robertsson and R. Johansson. Flexible force con- trol for accurate low-cost robot drilling. IEEE International Con- ference on Robotics and Automation, Roma, 10-14 April 2007, 4770-4775.
[7] A. Blomdell, G. Bolmsjö, T. Brogårdh, et al. Extending an in- dustrial robot controller. IEEE Ro-botics & Automation Maga- zine, 2005, 12(3): 85-94.
[8] J. Liang, S. S. Bi. Design and experimental study of an end effe- ctor for robotic drilling. International Journal of Advanced Ma- nufacturing Technol-ogy, 2010, 50(1-4): 399-407.
[9] 费少华. 机器人制孔终端执行器控制系统设计研究[D]. 浙江大学, 2012.