六铝酸盐催化剂的研究进展
Advance in the Catalysis of Hexaaluminate Compound
DOI: 10.12677/MS.2013.35037, PDF, HTML, XML, 下载: 3,757  浏览: 10,603 
作者: 张芳芳, 李雷, 张轲*:郑州大学化学分子工程学院,郑州
关键词: 六铝酸盐催化剂晶体结构Hexaaluminate; Catalyst; Crystal Structure
摘要: 本文从六铝酸盐复合氧化物的晶体结构及作为催化剂的应用方面入手,综述了相应的研究成果,并对六铝酸盐复合氧化物未来的应用进行了展望。
Abstract: This paper reviews the structure of hexaaluminate and its application as the catalysis. On the other hand, we also briefly summarize the relative research of hexaaluminate compound and forecast the prospect of the future ap- plication of it.
文章引用:张芳芳, 李雷, 张轲. 六铝酸盐催化剂的研究进展[J]. 材料科学, 2013, 3(5): 206-210. http://dx.doi.org/10.12677/MS.2013.35037

参考文献

[1] N. Iyi., S. Takekawa and W. Kimura. Cyrstal chemistry of hexa- aluminates: β-alumina and magnetoplumbite sturcutre. Journal of Solid State Chemistry, 1989, 83(1): 8-19.
[2] 张俊英, 张中太, 唐子龙. 六铝酸盐基荧光粉的发光性能[J]. 材料科学与工艺, 2002, 10(2): 213-219.
[3] A. Kahn, A. M. Lejus, M. Madsac, et al. Journal of Applied Phy- sics, 1981, 52(11): 6864-6869.
[4] C. M. Jantzen, P. R. Neugranonkar. Solid-state reaction in the system A12O3-Nd2O3-CaO: A system pertinent to radioactive disposal. Materials Research Bulletin, 1981, 16(5): 519-524.
[5] J. Kirchnerova, D. Klvana. Design criteria for high-temperature combustion catalysts. Catalysis Letters, 2000, 67(2-4): 175-181.
[6] D. L. Trimm. Materials selection and design of high temperature catalytic combustion units. Catalysis Today, 1995, 26(3-4): 231- 238.
[7] G. Groppi, F. A. Ssandri. The crystal structure of Ba-β-alumina materials for high-temperature catalytic combustion. Journal of Solid State Chemistry, 1995, 114(2): 326-336.
[8] M. Machida, K. Eguchi and H. Arai. Effect of additives on the surface area of oxide supports for catalytic combustion. Journal of Catalysis, 1987, 103(2): 385-393.
[9] J. G. Park, A. N. Cormack. Crystal/Defect structure and phase stability in Ba hexaaluminates. Journal of Solid State Chemistry, 1996, 121(2): 278-290.
[10] 徐占林. 六铝酸盐AMAl11019催化剂上甲烷二氧化碳重整制合成气反应研究[D]. 吉林大学, 2000.
[11] M. Machida, A. Sato, T. Kijima, et al. Catalytic properties and surface modification of hexaaluminate microcrystals for com- bustion catalyst. Catalysis Today, 1995, 26(3): 239-245.
[12] B. W. L. Jane, R. M. Nelson, James, et al. Catalytic oxidation of methane over hexaalumin ates and hexaaluminate-supported Pd catalyst. Catalysis Today, 1999, 47(1-4): 103-113.
[13] M. Machida, K. Eguchi and H. Arai. Effect of additives on the surface area of oxide supports for catalytic combustion. Journal of Catalysis, 1987, 103(2): 385-393.
[14] 王军威, 田志坚, 徐金光等. 甲烷高温燃烧催化剂研究进展[J]. 化学进展, 2003, 15(3): 242-248.
[15] G. Groppi, M. Bellotto, C. Cristiani, et al. Preparation and char- acterization of hexaaluminate based materialsfor catalytic com- bustion. Applied Catalysis A, 1993, 104(2): 101-108.
[16] H. Sadamori. Application concepts and evaluation of small-scale catalytic combustors for natural gas. Catalysis Today, 1999, 47 (1-4): 325-338.
[17] 徐占林, 崔运城, 李青仁等. ABAl11O19−δ的制备和对CH4 + CO2制合成气反应的催化性能[J]. 松辽学刊, 2000, 1: 14-16.
[18] M. Machida, K. Eouchi and H. Arai. Effect of structural modi- fication on the catalytic property of Mn-substituted hexaalumi- nates. Journal of Catalysis, 1990, 123(2): 477-485.
[19] 翟彦青, 孟明, 李永丹等. La、Ba离子对高温燃烧催化剂六铝酸盐结构和性质的影响[J]. 应用化学, 2005, 22(3): 320-325.
[20] G.Groppi, C. Cristiani and P. Fozratti. Preparation, characteri- zation and catalytic activity of pure and substituted La-hexa- aluminate systems for high temperature catalytic combustion. Applied Catalysis B: Environmental, 2001, 35(2): 137-148.
[21] 陈笃慧, 毛双通, 杨乐夫等. Mn2+和La3+对提高六铝酸盐热稳定性燃烧活性的作用[J]. 天然气化工, 1996, 21(4): 24-27.
[22] S. R. Jansen, J. W. de Haan, L. J. M. Vande, et al. Incorporation of nitrogen in alkaline-earth hexaaluminates with a β-aluminate or a magnetoplumbite-type structure. Chemistry of Materials, 1997, 9(7): 1516-1523.
[23] R. Gadow, M. Lischka. Lanthanum hexaaluminate-novel ther- mal barrier coatings for gas turbine applications-materials and process development. Surface and Coatings Technology, 2002, 151-152: 392-399.
[24] G. Groppi, M. Bellotto, C. Cristiani, et al. Thermal evolution crystal structure and cation valence of Mn in substituted Ba-β- Al2O3 prepared via coprecipitation in aqueous medium. Journal of materials science, 1999, 34(11): 2609-2620.
[25] M. Machida, K. Eguchi and H. Arai. Catalytic properties of BaMAl11O19 (M=Cr, Mn, Fe, Co, and Ni) for high-temperature catalytic combustion. Journal of Catalysis, 1989, 120(2): 377- 386.
[26] P. A. Duart, Y. Brullé, F. Gaillard, et al. Catalytic combustion of methane over copper- and manganese-substituted barium hexa- aluminates. Catalysis Today, 1999, 54(1): 181-190.
[27] 谭亚军, 蒋展鹏, 祝万鹏等. 用于有机污染物湿式氧化的铜系催化剂活性研究[J]. 化工环保, 2000, 20(3): 6-10.
[28] P. Artizzu, N. Guilhaume, E. Garbowski, et al. Catalytic com- bustion of methane on copper-substituted barium hexaalumi- nates. Catalysis Letters 1998, 51(1-2): 69-75.
[29] 纪敏, 毕颖丽, 甄开吉, 吴越. 甲烷与二氧化碳重整制取合成气反应的研究[J]. 分子催化, 1998, 12(3): 199-206.
[30] 刘延, 周广栋, 王君霞等. Ni/AAl12O19 (A = Ca, Sr, Ba, La)催化CO2重整甲烷制合成气[J]. 宁夏大学学报(自然科学版), 2001, 22(2): 150-151.
[31] K. Zhang, G. Zhou, J. Li and T. Cheng. The electronic effects of Pr on La1-xPrxNiAl11O19 for CO2 reforming of methane. Catalysis Communications, 2009, 10: 1816-1820.
[32] 吴越. 氧化物的非化学计量性和催化作用[J]. 科学通报, 1992, 2: 97-106.
[33] 吴越. 催化化学[M]. 科学出版社, 1998: 705.
[34] 林晓敏, 宋文福, 李莉萍等. Ce1-xGdxO2−δ (x = 0.05~0.50)固溶体的溶胶–凝胶法合成与性质研究[J]. 化学学报, 2004, 62(10): 951-955.
[35] Z. D. Dohceevic-Mitrovic, M. J. Scepanovic, Z. V. Grujic-Broj- ěin, et al. The size and strain effects on the Raman spectra of Ce1−xNdxO2−δ (0 ≤ x ≤ 0.25) nanopowders. Solid State Communi- cations, 2006, 137(7): 387-390.
[36] T. X. Cheng, X. G. Yang and Y. Wu. Synthesis, characterization and catalytic behaviour of La2-xSrxCoO4±λ (x = 0 - 2) in complete oxidation, Science in China,1995, 38(9): 1025-1037.
[37] J. R. Mcbride, K. C. Hass, B. D. Poindexter, et al. Raman and x- ray studies of Ce1−xRExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 1994, 76(4): 2435-2441.
[38] 李岚, 郭明, 普志英, 鲁继青, 罗孟飞. 吸光度对Ce0.9Ln0.1O2−δ固溶体氧缺位浓度观测值的影响[J]. 无机化学学报, 2011, 27(5): 840-844.