不同工况下轴流泵进口流速场及其流量测试研究
Research on Axial-Flow Pump Inlet Velocity Field and Pump Flow at Different Operating Condition
DOI: 10.12677/IJM.2013.23007, PDF, HTML, 下载: 2,827  浏览: 8,639 
作者: 胡金杰:泰州市河海水利勘测设计有限公司,靖江;赵江辉:太仓市水利局,太仓;仇 磊:江苏国润水利建设有限公司,泰兴
关键词: 轴流泵流速场测流LDV技术Origin插值积分 Axial-Flow Pump; Velocity Field; Flow Measurement; LDV Technology; Origin Interpolation Integral
摘要:

采用LDV技术对长直管进水条件下轴流模型泵叶轮进口流速场进行了测试,分析研究了三种工况下叶轮进口三条测线轴向流速分布规律及Origin插值积分测流精度。结果表明:0.8 Qopt、1.0 Qopt、1.2 Qopt三种工况下叶轮进口三条测线轴向流速均无回流,分布趋势较为一致;测线一轴向流速呈抛物线分布,且1.0 Qopt和1.2 Qopt工况下分布比0.8 Qopt工况均匀;测线二及测线三轮毂侧流速较大,增大趋势较快。误差分析显示:不同工况下叶轮进口三条测线流量积分最大误差为1.58%。运用Origin插值积分工具测流,具备可操作性及适用性较强、测量精度较高等优点。

The impeller inlet velocity field of axial-flow pump under the long straight pipe inlet was tested by using LDV technology. The axial velocity distributions of impeller inlet at three measuring lines, and origin interpolation integral flow measurement accuracy under three working conditions were analyzed. The results show that under the three working conditions of 0.8 Qopt, 1.0 Qopt and 1.2 Qopt, axial velocity backflow does not exist at three measuring lines, and distribution trend is more consistent. The axial velocity of measuring line one appears parabolic distribution, and the distribution under the two working conditions of 1.0 Qopt and 1.2 Qopt is more uniform than that under the working conditions of 0.8 Qopt; The axial velocity at the hub side of measuring line two and three is greater, and increasing trend is faster. Error analysis shows that at the three measuring lines of 0.12 D, 0.22 D, 0.32 D axial distance from the impeller center, the maximum error of flow integration is 1.58% under the three working conditions. The flow can be measured accurately via the origin interpolation integral tool with the operability and applicability.

文章引用:胡金杰, 赵江辉, 仇磊. 不同工况下轴流泵进口流速场及其流量测试研究[J]. 力学研究, 2013, 2(3): 35-40. http://dx.doi.org/10.12677/IJM.2013.23007

参考文献

[1] 刘超.水泵与水泵站[M]. 北京: 中国水利水电出版社, 2009.
[2] 李忠, 杨敏官, 王春林. 轴流泵叶轮出口流场实验[J]. 农业机械学报, 2009, 40(9): 94-97.
[3] 杨华, 孙丹丹, 汤方平, 等. 轴流泵非稳定工况下叶轮进口流场试验研究[J]. 排灌机械工程学报, 2011, 29(5): 406-410.
[4] 汤正军, 黄季艳, 仇宝云, 等.大型水泵流量测定方法研究[J].中国农村水利水电, 2006, (12): 67-69.
[5] 张武高, 陈晓玲, 曹广军. 利用LDV测量离心蜗壳流道内速度场的校核[J]. 石油机械, 2000, 28(3): 36-39.
[6] 杨昌明. 轴流泵间隙流动数值模拟与试验研究[D]. 西南交通大学, 2003.
[7] N. Pedersen, P. S. Larsen and C. B. Jacobsen. Flow in a cen- trifugal pump impeller at design and off-design conditions-part I:particle image velocimetry (PIV) and laser doppler velocimetry (LDV)measurements. ASME Journal of Fluids Engineering, 2003, 125(1): 61-72.
[8] G. Wuibaut, G. Bois, M. El Hajem, et al. Optical PIV and LDV comparisons of internal flow investigations in SHF impeller. International Journal of Rotating Machinery, 2006, 2006: 1-9.
[9] T. Matsunuma. Unsteady flow field of an axial-flow turbine rotor at a low reynolds number. ASME Journal of Turbomachinery, 2007, 129: 360-371.
[10] 金燕. 贯流泵内部流动的数值模拟与三维LDV测量研究[D].扬州大学, 2010.