离子液体的电磁特性研究
Research on Conductivity and Magnetism Properties of Ionic Liquid
DOI: 10.12677/JAPC.2013.24010, PDF, HTML, XML, 下载: 3,563  浏览: 12,904 
作者: 鲁戈舞:北京大学化学与分子工程学院,北京;航天特种材料及工艺技术研究所,北京;陶国宏:四川大学化学学院,成都;郝 强, 张天翔:航天特种材料及工艺技术研究所,北京;寇 元*:北京大学化学与分子工程学院,北京
关键词: 离子液体离子液体凝胶导电性磁性离子液体Ionic Liquid; Ionic Liquid Gel; Conductivity; Magnetic Ionic Liquid
摘要: 离子液体的性质可以通过阴阳离子的配伍进行调节,因此可运用于众多领域,而高电导和强磁性是离子液体运用于电磁防护、隐身等领域的关键要素。本文综述了离子液体的电导性质和磁性方面研究的最新进展,特别是离子液体在高电导率和强磁性方面的研究。在离子液体电导性质研究方面,可以通过调变阴阳离子组合,设计出各种新型的高电导离子液体体系,包括氯铝酸盐类离子液体、大环多铵阳离子磷酸盐离子液体、含氟离子液体、烷基咪唑鎓氢氟酸盐类离子液体,此外离子液体添加到凝胶或聚合物电介质中形成离子液体凝胶也具有较高的电导率。在离子液体磁性研究方面,由于离子液体的磁性主要来源于阴离子组成,其磁化率和磁矩等磁学性能与所含金属的性能密切相关,选择性报道了几种以铁、钴、锰为中心的金属氯配阴离子和以稀土为阴离子中心的强磁性离子液体。除此之外,介绍了几种基于离子液体结构的磁流体。 The unique properties of ionic liquid (IL) have attracted increasing interest due to their potential applications in various areas. The high conductivity and strong magnetism are the critical issues to the microwave protection and stealthy technology application of IL, so the recent progress of high conductive IL and strong magnetic ILs was reviewed and discussed in this paper. High conductive ILs were obtained by modulating the combinations of cation and anion. Chloroaluminate ILs, polyammonium phosphate ILs, alkyl imidazolium hydrofluoric acid ILs were introduced as high conductive ILs. In addition, ionic liquid gel was formed by adding IL into gel or polymer electrolyte, which also has high conductivity. On the other hand, the magnetism of IL mainly came from the anion, thus the magnetic susceptibility was close related to the properties of metal contained in the IL. Two kinds of ILs with strong magnetic susceptibility were reviewed, one was the IL with magnetic metal anion and the other was the IL with lanthanide centered anion. A series of magnetic fluids-based IL was also introduced in this paper.
文章引用:鲁戈舞, 陶国宏, 郝强, 张天翔, 寇元. 离子液体的电磁特性研究[J]. 物理化学进展, 2013, 2(4): 58-64. http://dx.doi.org/10.12677/JAPC.2013.24010

参考文献

[1] Wasserscheid, P. and Keim, W. (2000) Ionic liquids-new “solu-tions” for transition matal catalysis. Angewandte Chemie International Edition, 39, 3772-3789.
[2] Tang, J.B., Radosz, M. and Shen, Y.Q. (2008) Poly(ionic liquid)s as optically transparent microwave-Absorbing materials. Macromolecules, 41, 493-496.
[3] Abbott, A.P., Capper, G., Davies, D. L., et al. (2001) Preparation of novel, moisture-stable, Lewis-acidic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications, 2010-2011.
[4] Lall, S.I., Mancheno, D., Castro, S., et al. (2000) Polycations. Part X. LIPs, a new category of room temperature ionic liquid based on polyammo-nium salts. Chemical Communications, 2413-2414.
[5] Bonhôte, P., Dias, A., Papageorgiou, N., et al. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 35, 1168-1178.
[6] Noda, A., Susan, M.A.B.H., Kudo, K., et al. (2003) Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. Journal of Physical Chemistry B, 107, 4024-4033.
[7] Ito, K., Nishina, N. and Ohno, H. (2000) Enhanced ion conduction in imidazolium-type molten salts. Electrochimica Acta, 45, 1295-1298.
[8] Morita, M., Shirai, T., Yoshimoto, N., et al. (2005) Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt. Journal of Power Source, 139, 351-355.
[9] Stathatos, E. and Lianos, P. (2003) A quasi-solid-state dye sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid. Chemistry of Materials, 15, 1825-1829.
[10] Fukushima, T., Kosaka, A., Ishimura, Y., et al. (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 300, 2072-2074.
[11] Aida, T. and Fukushima, T. (2007) Soft materials with graphitic nanostructures. Philosophical Transactions of the Royal Society A, 365, 1539-1552.
[12] Hayashi, S. and Hamaguchi, H. (2004) Discovery of a magnetic ionic liquid [bmim]FeCl4. Chemistry Letters, 33, 1590-1591.
[13] Bäcker, T., Breunig, O., Valldor, M., et al. (2011) In-situ crystal growth and properties of the magnetic ionic liquid[C2mim][FeCl4]. Crystal Growth & Design, 11, 2564-2571.
[14] Del Sesto, R.E., McCleskey, T.M., Burrell, A.K., et al. (2008) Structure and magnetic behavior of transition metal based ionic liquids. Chemical Communications, 447-449.
[15] Chang, J.C., Ho, W.Y., Sun, I.W., et al. (2011) Synthesis and properties of new tetrachlorocobaltate (I) and tetrachloromanganate (II) anion salts with dicationic counterions. Polyhedron, 30, 497-507.
[16] Li, M., De Rooy, S.L., Bwambok, D.K., et al. (2009) Magnetic chiral ionic liquids derived from amino acids. Chemical Communications, 6922-6924.
[17] Mallick, B., Balke, B., Felser, C., et al. (2008) Dysprosium room-temperature ionic liquids with strong luminescence and response to magnetic fields. Angewandte Chemie International Edition, 47, 7635-7638.
[18] Getsis, A., Balke, B., Felser, C., et al. (2009) Dysprosium-based ionic liquid crystals: thermal, structural, photo- and magnetophysical properties. Crystal Growth & Design, 9, 4429-4437.
[19] Oliveira, F.C.C., Rossi, L.M., Jardim, R.F., et al. (2009) Magnetic fluids based on γ-Fe2O3 and CoFe2O4 nanoparticles dispersed in ionic liquids. Journal of Physical Chemistry C, 113, 8566-8572.
[20] Rodríguez-Arco, L., López-López, M.T., González-Caballero, F., et al. (2011) Steric repulsion as a way to achieve the required stability for the preparation of ionic liquid-based ferrofluids. Journal of Colloid and Interface Science, 357, 252-254.