新型储氢材料B-N-H化合物储氢性能的理论研究
A Theoretical Research on B-N-H for Hydrogen Storage Properties
DOI: 10.12677/CMP.2013.24011, PDF, 下载: 3,161  浏览: 9,870  国家自然科学基金支持
作者: 刘蓝琦, 赵亚芹, 何 垚:云南大学物理科学技术学院,昆明
关键词: 储氢第一性原理硼氮氢化合物电子结构态密度脱氢Hydrogen Storage; First-Principles; B-N-H Compound; Electronic Structure; Density of State; Dehydrogenation
摘要: 本文采用基于密度泛函理论的平面波赝势方法,探究B-N-H储氢材料的储氢性能。首先从NH4BH4出发陆续通过改变基团结构,NH3BH3过渡到[BH4][BH2 (NH3)2]先后从晶体结构、电子结构的角度进行详细分析并分别计算三种结构的脱氢能量综合对比为最终实现脱氢能量的降低提供理论依据。研究发现NH4BH4NH3BH3[BH4][BH2 (NH3)2]三者均是从BH4BH3团簇内脱去H最容易然而NH4BH4BH4NH4团簇局域性非常强脱氢所需能量较高NH3BH3NH3BH3之间已成键团簇间相互作用增强于是B与周围H之间的相互作用减弱脱氢能量降低进一步改变基团结构,[BH4][BH2 (NH3)2]的结构来看,BH4局域性更弱BH4基团与BH2 (NH3)2基团的原子间轨道交叠更明显相互作用更强致使BH4基团内部BH之间相互作用继续降低于是脱氢能量进一步降低。

The properties of B-N-H hydrogen storage materials have been studied by using the plane-wave pseudo- potential method based on the density functional theory. It begins with NH4BH4,changing the group structures though NH3BH3to[BH4][BH2(NH3)2], analyzing these three kinds of crystals according to their crystal structures and elec- tronic structures and calculating their dehydrogenation energy separately, which will provide a good theoretical basis to de- crease the dehydrogenation energy. The results show that it is all most easily to remove H from BH4 or BH3 cluster as for NH4BH4, NH3BH3and[BH4][BH2 (NH3)2], but the dehydrogenation energy of NH4BH4 is much higher than others owing to its strong localization between BH4 and NH4.In the case of NH3BH3, there exists chemical bonds between NH3 and BH3 enhancing the influence between clusters and weakening the interaction between B and N and then decreasing the dehydrogenation energy as a result. After further changing the group structure, the localization of BH4 in [BH4][BH2 (NH3)2] seems much weaker leading to a wonderful consequence to reduce the dehydrogenation energy.

Abstract:
文章引用:刘蓝琦, 赵亚芹, 何垚. 新型储氢材料B-N-H化合物储氢性能的理论研究[J]. 凝聚态物理学进展, 2013, 2(4): 79-87. http://dx.doi.org/10.12677/CMP.2013.24011

参考文献

[1] 蓝志强, 肖潇, 苏鑫, 陈捷狮, 郭进. (2012) Al掺杂Mg2Ni合金的电子结构及贮氢性能的影响[J]. 物理化学学报, 8, 1877- 1884.
[2] 周震, 言天英, 高学平. (2006) 储氢材料的模拟与设计[J]. 物理化学学报, 9, 1168-1174.
[3] Grochala, W. and Edwards, P.P. (2004) Thermal decomposition of the non-interstitial hydridesfor the storage and production of hydrogen. Chemical Reviews, 104, 1283-1315.
[4] Flacau, R., Ratcliffe, C.I. and Desgreniers, S. (2010) Structure and dynamics of ammonium borohydride. Chemical Communi- cation, 46, 9164-9166.
[5] Parry, R.W., Schultz, D.R. and Girardot, P.R. (1958) The pre- paration and properties of hexamminecobalt (Ш) borohydride, hexamminechromium (Ш) borohydride and ammonium borhy- dride. Journal of the American Chemical Society, 80, 1-3.
[6] Karkamkar, A., Kathmann, S.M. and Schenter, G.K. (2009) Ther- modynamic and structural investigations of ammonium borohy- dride, a solid with a highest content of thermodynamically and kinetically accessible hydrogen. Chemistry of Materials, 21, 4356- 4358.
[7] Shore, S.G. and Parry, R.W. (1955) The crystalline compound ammonia-borane, H3NBH3. Journal of the American Chemical Society, 77, 6084-6085.
[8] Hu, M.G., Van Paasschen, J.M. and Geanangel, R.A. (1977) New synthetic approaches to ammonia-borane and its deuterated derivatives. Journal of Inorganic and Nuclear Chemistry, 39, 2147-2150.
[9] Stephens, F.H., Pons, V. and Tom Baker, R. (2007) Ammonia- borane: The hydrogen source par excellence. Dalton Transaction, 25, 2613-2626.
[10] Wolf, G., Baumann, J., Baitalow, F. and Hoffmann, F.P. (2000) Calorimetric process monitoring of thermaldecomposition of B-N-H compounds. Thermochimica Acta, 343, 19-25.
[11] Miranda, C.R. and Ceder, G. (2007) Ab initio investigation of ammonia-borane complexes for hydrogen storage. The Journal of Chemical Physics, 126, Article ID: 184703.
[12] Baumann, J., Baitalow, F. and Wolf, G. (2005) Thermal decom- position of polymeric aminoborane (H2BNH2)x under hydrogen release. Thermochimica Acta, 430, 9-14.
[13] Wolf, G., van Miltenburg, J.C. and Wolf, U. (1998) Thermoche- mical investigations on borazane (BH3-NH3) in the temperature range from 10 to 289 K. Thermochimica Acta, 317, 111-116.
[14] Stock, A. and Kuss, E. (1923) Borwasserstoffe, VI.: Die ein- fachsten Borhydride. Berichte der Deutschen Chemischen Ge- sellschaft, 56B, 789-808.
[15] Fang, Z.Z., Luo, J.H., Kang, X.D., Xia, H.J., Wang, S.S., Wen, W., Zhou, X.T. and Wang, P. (2011) Facile solid-phase synthesis of the diammoniate of diborane and its thermalDecomposition behavior. Physical Chemistry Chemical Physics, 13, 7508-7513.
[16] Mayer, E. (1973) Synthesis of cyclopentaborazane from diam- moniate of diborane. Inorganic and Nuclear Chemistry Letters, 9, 343-346.
[17] Kohn, W. and Sham, L.J. (1965) Self-consistent equations in- cluding exchange and correlation effects. Physical Review, 140, A1133- A1138.
[18] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.
[19] Kresse, G. and Furthmüller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169-11186.
[20] Kresse, G. and Furthmuller, J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Computational Materials Science, 6:15.
[21] Lee, S.M., Kang, X.-D., Wang, P., Cheng, H.-M. and Lee, Y.H. (2009) A comparative study of the structural, electronic, and vi- brational properties of NH3BH3 and LiNH2BH3: Theory and ex- periment. Chemical Physics and Physical Chemistry, 10, 1825- 1833.
[22] Bowden, M., Heldebrant, D.J., Karkamkar, A., Proffen, T., Schenter, G.K. and Autrey, T. (2010) The diammoniate of dibo- rane: Crystal structure and hydrogen release. Chemical Commu- nications, 46, 8564-8566.