配电线路雷电感应过电压模拟实验研究
The Simulation Experiment of Induction Lightning Overvoltage on the Distribution Line
DOI: 10.12677/jee.2013.12017, PDF, HTML, 下载: 2,999  浏览: 9,186 
作者: 刘 宇, 陆国俊, 熊 俊:广州供电局有限公司电力试验研究院,广州;余占清, 王泽众, 王绍安, 曾 嵘:清华大学电机系电力系统国家重点实验室,北京;黄 颖:三峡大学电气与新能源学院,宜昌
关键词: 配网防雷雷电感应过电压模拟实验仿真计算The Lightning Protection of Distribution Network; Induction Lightning Overvoltage; Simulation Experiment; Simulating Calculation
摘要: 10 kV配电线路绝缘水平低,易受直击雷和感应雷的危害,雷击是造成配网事故的重要原因之一。为了减少雷害事故的发生,提高配电网的供电可靠性,开展配电线路雷电感应过电压模拟实验及真型实验研究可以获得真实雷电数据,并且为雷电过电压仿真计算提供依据,因此具有重要的工程意义和实用价值。本文首先介绍了雷电感应过电压模拟实验的基本思路,然后根据相应的实验目的合理设计了实验方案,最后将模拟实验结果与仿真计算结果进行了对比分析,从而证实了模拟实验的有效性。
Abstract: The insulation level of 10 kV power distribution line is low, which is vulnerable to the direct lightning and induction lightning. Lightning is one of the important reasons for the accident of distribution network. In order to reduce lightning accidents and improve the power supply reliability of distribution network, it’s important in theoretic and engineering to run the simulation and real-model experiment of induction lightning overvoltage on the distribution line, which is able to get real lightning data to provide a basis for the simulation of lightning overvoltage. In this paper, the basic idea of the simulation experiment is introduced first. Then, a rational experiment plan is designed according to our aim. Finally, the result of our experiment and simulation is compared, which can confirm the validity of the experiment.
文章引用:刘宇, 余占清, 黄颖, 王泽众, 王绍安, 曾嵘, 陆国俊, 熊俊. 配电线路雷电感应过电压模拟实验研究[J]. 电气工程, 2013, 1(2): 78-83. http://dx.doi.org/10.12677/jee.2013.12017

参考文献

[1] 阮羚, 谷山强, 赵淳等 (2012) 鄂西三峡地区220 kV线路差异化防雷技术与策略. 高电压技术, 1, 157-166.
[2] 王希, 李振, 彭向阳等 (2012) 耦合地线架设位置及根数对500/220 kV同塔4回线路防雷特性影响. 高电压技术, 4, 863- 870.
[3] 横山茂 (2008) 配电线路雷害对策. 中国电力出版社, 北京, 15-17.
[4] 莫芳红 (2009) 6~35kV配电网防雷保护现状分析及改进措施. 机电信息, 240, 25-26.
[5] Masaru, I., Koji, M. and Yasuji, H. (1999) Experimental study of lightning-induced voltage on an overhead wire over lossy ground. IEEE Transactions on Electromagnetic Compatibility, 41, 544- 547.
[6] Piantini, A., Janiszewski, J.M., Borghetti, A., Nucci, C.A. and Paolone, M. (2007) A scale model for the study of the LEMP response of complex power distribution networks. IEEE Trans- actions on Power Delivery, 22, 294-318.
[7] Nucci, C.A. and Rachidi, F. (1999) Lightning induced overvoltage. IEEE Transmission and Distribution Conference, 4, 1474- 1478.
[8] Yokoyama, S., Miyake, K. and Fukui, S. (1989) Advanced ob- servations of lightning induced voltage on power distribution lines II. IEEE Transactions on Power Engineering Review, 9, 1078-1087.
[9] 毛志国, 邹晓兵, 刘锐, 刘骁, 何露芽, 王新新 (2007) 一种10 kV方波电压发生器. 高电压技术, 10, 41-44.
[10] Zeng, R., Zhang, Y., Chen W.Y. and Zhang, B. (2008) Mea- surement of electric field distribution along composite insulators by integrated optical electric field sensor. IEEE Transactions on Dielectrics and Electrical Insulation, 15, 302-309.
[11] Eriksson, A.J. and Meal, D.V. (1982) Lightning performance and overvoltage surge studies on a rural distribution line. Generation, Transmission and Distribution, 129, 505-511.
[12] De La Rosa, F., Valdivia, R., Perez, H. and Loza, J. (1988) Dis- cussion about the inducing effects of lightning in an experimen- tal power distribution line in Mexico. IEEE Transac-tions on Power Delivery, 3, 245-282.
[13] 余占清, 曾嵘, 王绍安等. (2013) 配电线路雷电感应过电压仿真计算分析. 高电压技术, 2, 415-422.
[14] Rakov, V.A. (1997) Lightning electromagnetic fields: Modeling and measurements. The 12th International Zurich Symposium on Electromagnetic Compatibility, Zurich, 59-64.