基于“白色空间”的备份网络不间断通信研究
Research of Connection Continuity of White Space Backup Network
DOI: 10.12677/HJWC.2014.41002, PDF, HTML, 下载: 2,823  浏览: 8,665 
作者: 赵新锋, 孙文胜:杭州电子科技大学通信工程学院,杭州
关键词: 白色空间备份网络架构无线接入网WIFIWhite Space; Backup Network Architecture; Wireless Access Network; WIFI
摘要: 提出了一种基于广播电视频段的“白色空间”备份网络,它提供更具有可靠性的接入网,比传统的接入网更具优势。仿真实验结果证明相比于传统方案,提出的“白色空间”备份网络,更有助于减小报文传输和交换的时延,对于网络中的对时延敏感的大流量数据交换业务意义重大。在互联网或WAN中断的情况下,“白色空间”备份网络能够有利于大流量数据交换业务的快速处理。
Abstract:  This paper proposes the white space backup network that operates on TV spectrum to provide a better reliability access network than conventional unlicensed-based access networks. The numerical results of performance evaluation demonstrate that the proposed white space backup network can contribute to less time delay in the delivery of messages or transactions than the time delay of the conventional approach, and this is a crucial benefit to time-critical applications such as heavy traffic. We expect that the deployment of the white space backup networks can assist those heavy traffic applications to achieve a shorter processing time even under a broken Internet or WAN connection.
文章引用:赵新锋, 孙文胜. 基于“白色空间”的备份网络不间断通信研究[J]. 无线通信, 2014, 4(1): 7-12. http://dx.doi.org/10.12677/HJWC.2014.41002

参考文献

[1] 李晓阳 (2012) WiFi技术及其应用与发展. 信息技术, 2, 196198.
[2] Yoon, S., Lim, K. and Kim, J. (2010) Cross-layer dynamic spectrum map management framework for white space applications. EURASIP Journal on Wireless Communications and Networking, 2010, Article ID: 870976.
[3] Gardner, W.A. (1988) Signal interception: A unifying theoretical framework for feature detection. IEEE Transactions on Communications, 36, 897-906.
[4] Urkowitz, H. (1967) Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55, 523-531.
[5] IEEE 802.22 Working Group on Wireless Regional Area Networks.
[6] Wang, J., Song, M.S., Santhiveeran, S., et al. (2010) First cognitive radio networking standard for personal/portable devices in TV white spaces. ECMA White Paper, IEEE Symposium on New Frontiers in Dynamic Spectrum, Singapore City, 6-9 April 2010, 1-12.
[7] Geist, R., Smotherman, M. and Talley, R. (1990) Modeling recovery time distributions in ultrareliable fault-tolerant systems. 20th International Symposium on Fault-Tolerant Computing, FTCS-20, Digest of Papers, Newcastle Upon Tyne, 26-28 June 1990, 499-504.
[8] Sdralia, V., Tzerefos, P. and Smythe, C. (2001) Recovery analysis of the DOCSIS protocol after service disruption. IEEE Transactions on Broadcasting, 47, 377-385.
[9] Domdom, R., Espey, B., Goodman, M., Jones, K., Lim, V. and Patek, S. (2000) Transient analysis of DOCSIS 1.1 cable modem networks. 2000 IEEE International Conference on Systems, Man, and Cybernetics, 3, 2263-2268.