基于COMSOL的微型直接甲醇燃料电池的数值模拟
Numerical Simulation of Micro Direct Methanol Fuel Cells Using COMSOL
DOI: 10.12677/NAT.2014.41001, PDF, HTML,  被引量 下载: 5,794  浏览: 15,670  国家自然科学基金支持
作者: 赵祖光, 刘 俊, 陈观生, 曾毅波, 王婷婷, 郭 航:厦门大学物理与机电工程学院,厦门;厦门大学萨本栋微米纳米技术研究院,厦门
关键词: μDMFCCOMSOL数值模拟催化层扩散层μDMFC; COMSOL; Numerical Simulation; Catalytic Layer; Diffusion Layer
摘要: 利用CFD软件COMSOL对微型直接甲醇燃料电池(Micro Direct Methanol Fuel Cell, µDMFC)进行模拟仿真分析,该三维稳态模型综合考虑了电化学动力学、化学反应和组分传递的耦合过程分析了电池内部物质的传输与扩散层和催化层的结构参数对电池性能的影响。分析结果表明,扩散层厚度对电池性能的影响很大,选择合适的扩散厚度20 - 40 mm,可以获得更好的电池输出性能。
Abstract: This paper presents a study of numerical simulation and analysis of Micro Direct Methanol Fuel Cell (Micro Direct Methanol Cell, µDMFC) by using COMSOL. The three-dimensional steady-state model is set up in which the electrochemical kinetics, chemical reactions and composition of the coupling process are taken into consideration. We analyze the transport of the internal material in battery and influence of the structure parameters of diffusion layers and catalyst layers on the performance of the battery. The results show that the thickness of diffusion layer will greatly affect the performance of the battery, and when thickness of diffusion layer is chosen as 20 - 40 mm, better output performance of µDMFC can be obtained.
文章引用:赵祖光, 刘俊, 陈观生, 曾毅波, 王婷婷, 郭航. 基于COMSOL的微型直接甲醇燃料电池的数值模拟[J]. 纳米技术, 2014, 4(1): 1-7. http://dx.doi.org/10.12677/NAT.2014.41001

参考文献

[1] Ogden, J.M., Steinbugler, M.M. and Kreutz, T.G. (1999) A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: Implications for vehicle design and infrastructure development. Journal of Power Sources, 79, 143-168.
[2] Dillon, R., Srinivasan, S., Arico, A.S. and Antonucci, V. (2004) Internal activities in DMFC R&D: Status of technologies and potential applications. Journal of Power Sources, 127, 112-126.
[3] 刘晓为, 邓琴 (2003) MEMS微电源技术. 传感技术学报, 7, 77-80.
[4] Ubong, E.U., Shi, Z. and Wang, X. (2009) Three-dimensional modeling and experimental study of a high temperature PBIbased PEM fuel cell. Journal of the Electrochemical Society, 156, 1276-1282.
[5] Scott, K., Tama, W. and Cruickshank, J. (1997) Performance and modeling of a direct methanol solid polymer fuel cell. Journal of Power Sources, 65, 159-171.
[6] Scott, K. and Argtropoulus, P. (2004) A one dimensional model of a methanol fuel cell. Journal of Power Sources, 137, 228-238.
[7] Wang, Z.H. and Wang, C.Y. (2003) Mathematical modeling of liquid feed direct methanol fuel cells. Journal of the Electrochemical Society, 150, 508-519.
[8] O’Hayre, R., 车硕源, Collea, W., 等 (2007) 燃料电池基础. 电子工业出版社, 北京, 318-320.
[9] 王林山, 李瑛, 编著 (2005) 燃料电池. 冶金工业出版社, 北京, 168-169.
[10] 曾毅波, 刘俊, 陈观生, 赵祖光, 郭航 (2012) 基于透明的不同流道宽度微型直接甲醇燃料电池的性能比较与分析. 太阳能学报, 17-20.
[11] Chen, G.S., Zeng, Y.B., Liu, J., Da, K., Zhao, Z.G. and Guo, H. (2012) A new proton exchange membrane for direct methanol fuel cell. Proceedings of the 6th Asia-Pacific Conference on Transducers and Micro/Nano Technologies, Nanjing, 8-11 July 2012, 65-67.