散体相气力输送的入口数值分析
Digital Simulation of Inlet Structure of Pneumatic Transport
DOI: 10.12677/IJM.2013.24009, PDF, HTML, 下载: 2,739  浏览: 7,732 
作者: 张 永, 孙利民:力学与工程科学学院,郑州大学,郑州
关键词: 气力输送有限元仿真入口结构欧拉双流体模型Pneumatic Conveying; Fluent Simulation; Inlet Structure; Euler Two-Fluid Model
摘要: 针对气力输送中由于气力入口和散体入口存在夹角所造成的能耗高问题,提出了一种气力入口和散体入口0度角即平行的入口结构并对其可行性进行仿真得出以下结论:1) 可以采用气力入口和散体入口平行的入口结构依靠负压将沙粒吸入管道,进而借助气动力的推力推动散体在管道中输送;2) 当气动力入口深入管道一定深度可以增大散体入口区域负压面积及数值,更有利于对散体的吸附;3) 用仿真的手段说明沙粒进入管道的初速度以及加速度对沙粒在管道中的最终速度影响不大。 Two steps of simulation of gas-solid concurrent inlet structure of pneumatic transmission are done: 1) the distribution of gas pressure and velocity in the inlet belt by the condition of existing gas power only; 2) the emulation flow of sand near the region of inlet. So we draw a conclusion: 1) The way of adopting gas-solid concurrent structure to transport particles in duct is feasible; 2) The structure of gas inlet being deeper than particle inlet in tunnel could drag particle better; 3) It is stated again by simulation that the initial velocity and acceleration of particle into the tunnel has a weak impact on the terminal velocity of particle.
文章引用:张永, 孙利民. 散体相气力输送的入口数值分析[J]. 力学研究, 2013, 2(4): 47-52. http://dx.doi.org/10.12677/IJM.2013.24009

参考文献

[1] 李诗久, 周晓君 (1992) 气力输送理论与应用. 机械工业出版社理, 北京, 1-4.
[2] Ottjies, J.A. (1978) Digital simulation of pneumatic transport. Chemical Engineering Science, 33, 783-786.
[3] Saccanic, C. (1996) Solid speed and pressure loss in pneumatic conveying: Si-mulation and experimental measurements. Bulk Solid Handing, 16, 383-390.
[4] Sommerfeld, H.N. (1998) Modeling and numerical calculation of dilute-phase pneumatic conveying in pipe systems. Powder Technology, 99, 90-101.
[5] 林江 (2004) 气力输送系统中加速区气固两相流动特性的研究. 浙江大学学报(工学版), 7, 893-898.
[6] 林江 (2004) 气力输送系统流动特性的研究. 浙江大学, 杭州.
[7] 鲍仲福, 杜群贵, 谢凯 (2010) 基于欧拉双流体对气固喷射机器三维数值仿真. 流体机械, 5, 24-28.