可见光活性的氮硫钒共掺杂二氧化钛的掺杂比例优化
Optimization of Nitrogen, Sulfur and Vanadium Co-Doping TiO2 with Visible-Light Photocatalytic Activity in Water
DOI: 10.12677/AEP.2014.41B008, PDF, HTML, 下载: 2,706  浏览: 8,114 
作者: 万晓佳*, 何丹农:1上海交通大学材料科学与工程学院,上海,中国 2纳米技术及应用国家工程研究中心,上海,中国;王 婷*, 董亚梅:纳米技术及应用国家工程研究中心,上海,中国
关键词: 光催化二氧化钛氮硫钒共掺杂Photocatalytic Activity; TiO2; Nitrogen Sulfur and Vanadium Co-Doping
摘要:

本文通过溶胶凝胶法制备氮硫钒共掺杂的具有较高可见光催化活性的二氧化钛。并用均匀实验、二次多项式逐步回归分析和规划求解来使制备过程中氮、硫和钒的掺杂比例最优化。氮硫钒共掺杂可以使二氧化钛的带隙缩小至2.65~2.93 eV。在可见光(λ ≥ 400 nm)下照射3 h后,优化后的共掺杂二氧化钛催化剂对活性蓝的降解率最高可达90.40%

Nitrogen, sulfur and vanadium co-doped TiO2 photocatalysis with high visible light activities were synthesized through sol-gel process. Uniform design, quadratic multinomial stepwise regression analysis and programming solver were performed for co-doped TiO2 catalyst preparation optimization. The N, S and V co-doping narrowed band gap energy of TiO2 photocatalysis to the range of 2.65 to 2.93 eV. The photocatalytic degradation rate of reactive blue by optimal co-doped TiO2 catalyst was 90.40% in 3 h under visible light irradiation (λ ≥ 400 nm).

Abstract:

文章引用:万晓佳, 王婷, 董亚梅, 何丹农. 可见光活性的氮硫钒共掺杂二氧化钛的掺杂比例优化[J]. 环境保护前沿, 2014, 4(1): 47-52. http://dx.doi.org/10.12677/AEP.2014.41B008

参考文献

[1] Irie, H., Watanabe, Y. and Hashimoto, K. (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive pho-tocatalyst. Chemistry Letters, 32, 772-773.
[2] Sathish, M., Viswanathan, B., Viswanath, R.P. and Gopinath, C.S. (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials, 17, 6349-6353.
[3] Ho, W., Yu, J.C. and Lee, S. (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chemical Communications, 10, 1115-1117.
[4] Zhao, W., Ma, W., Chen, C., Zhao, J. and Shuai, Z. (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Journal of the American Chemical Society, 126, 4782-4783.
[5] Sakthivel, S. and Kisch, H. (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie International Edition, 42, 4908-4911.
[6] Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K. and Zhao, J. (2005) Efficient visi-ble-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science & Technology, 39, 1175-1179.
[7] Anpo, M., Dohshi, S., Kitano, M., Hu, Y., Takeuchi, M. and Matsuoke, M. (2005) The preparation and characterization of highly efficient titanium oxide-based photofunctional materials. Annual Review of Materials Research, 35, 1-27.
[8] Li, L., Liu, C. and Liu, Y. (2009) Study on activities of vanadium (IV/V) doped TiO2 (R) nanorods induced by UV and visible light. Materials Chemistry and Physics, 113, 551-557.
[9] Zhang, J.L., Wu, Y.M., Xing, M.Y., Leghari, S.A.K. and Sajjad, S. (2010) Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science, 3, 715-726
[10] Xing, M.Y., Zhang, J.L. and Chen, F. (2009) Photocatalytic performance of N-Doped TiO2 adsorbed with Fe3+ ions under visible light by a redox treatment. The Journal of Physical Chemistry C, 113, 12848-12853.
[11] Shen, X.Z., Liu, Z.C., Xie, S.M. and Guo, J. (2009) Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. Journal of Hazardous Materials, 162, 1193-1198.
[12] Periyat, P., McCormack, D.E., Hinder, S.J. and Pillai, S.C. (2009) One-pot synthesis of anionic (nitrogen) and cationic (sulfur) aodoped high-eemperature stable, visible light active, anatase photocatalysts. The Journal of Physical Chemistry C, 113, 3246- 3253.
[13] Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., Bahnemann, D.W. and Murugesan, V. (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38, 3001-3008.
[14] Sun, J., Qiao, L., Sun, S. and Wang, G. (2008) Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials, 155, 312-319.
[15] Ikeda, S., Sugiyama, N., Pal, B., Marci, G., Palmisano, L., Noguchi, H., Uosaki, K. and Ohtani, B. (2001) Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: Correlation with electron–hole recombination kinetics. Physical Chemistry Chemical Physics, 3, 267-273.
[16] Fuerte, A., Hernandez-Alonso, M.D., Maria, A.J., Martinez-Arias, A., Fernandez-Garcia, M., Conesa, J.C. and Soria, J. (2001) Visible light-activated nanosized doped-TiO2 photocatalysts. Chemical Communications, 24, 2718-2719.
[17] Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemannt, D.W. (1995) Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69-96.