双级时效对7N01合金组织与性能的影响
Effect of Two-Step Aging Treatment on Microstructure and Property of 7N01 Aluminum Alloy
DOI: 10.12677/MS.2014.43011, PDF, HTML, 下载: 3,321  浏览: 10,645  国家科技经费支持
作者: 黄 英, 邓运来, 陈 龙, 张新明:中南大学材料科学与工程学院,长沙;中南大学有色金属材料科学与工程教育部重点实验室,长沙
关键词: 7N01铝合金双级时效微结构7N01 Aluminum Alloy Two-Step Aging Microstructure
摘要: 采用光学显微镜、透射电镜、差示扫描量热法、硬度和电导率,针对不同的时效制度对A7N01铝合金车体板材性能与微观组织演变的影响进行了深入的研究与探讨。优化设计了几种时效制度,并分别进行了对比试验。制定了适合实际生产的时效制度。研究结果表明,7N01合金适宜的双级时效工艺为105/12h + 150/8h,此时合金的硬度、电导率和抗拉强度分别为123 HV36.3%IACS375.8 MPa。双级时效后,合金的晶内组织为细小弥散分布的η’(MgZn2)相,晶界上有断续分布的晶界析出相MgZn2和较明显的无沉淀析出带。通过采用合适的双级时效工艺可在适当降低合金强度的前提下有效的改善晶界析出相的分布,提高了合金的抗应力腐蚀性能。
Abstract: The optical microscopy, transmission electron microscopy, differential scanning calorimetry, hardness and electric conductivity measurements are employed to focus on studying the effect of aging treatment on the microstructure evolution and property of 7N01 aluminum alloy. Several aging regimes were designed and optimized, and were dealt with contrast tests respectively. And a suitable aging regime for actual production was formulated. The results show that the hardness, conductivity and tensile strength of the alloy are 123 HV, 36.3%IACS and 375.8 MPa respectively after duplex aging (105˚C/12h + 150˚C/8h). The precipitations of η’ (MgZn2) appear on grain interior; the discontinuous distribution of MgZn2 phase and the precipitated-free zones (PFZ) appear on the grain boundaries. With an appropriate deduction of hardness, which effectively improves the distribution of the precipitates on the grain boundary, a better corrosion resistance can be achieved.
文章引用:黄英, 邓运来, 陈龙, 张新明. 双级时效对7N01合金组织与性能的影响[J]. 材料科学, 2014, 4(3): 63-72. http://dx.doi.org/10.12677/MS.2014.43011

参考文献

[1] 刘君城, 金龙兵, 何振波, 等 (2011) 7N01铝合金热压缩流变行为研究. 稀有金属, 36, 812-817.
[2] 刘杰 (2008) 7N01铝合金高温变形行为研究. 湖南大学, 长沙.
[3] 李海仙, 张延辉, 滕志贵 (2007) 7N01合金扁铸锭熔铸工艺探讨. 技术与装备, 6, 25-28.
[4] 邓波, 钟毅, 起华荣, 等 (2006) 7N01铝合金高速反向挤压实验研究. 云南冶金, 35, 50-52, 83.
[5] Oliveira, A.F., De Barros, M.C., Cardoso, K.R., et al. (2004) The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys. Materials Science and Engineering: A, 379, 321-326.
[6] Peng, G.S., Chen, K.H. and Fang, H.C. (2011) The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy. Material and Corrosion, 62, 35-40.
[7] Huang, L.P., Chen, K.H., Li, S. and Song, M. (2007) Influence of high-temperature pre-precipitation on local corrosion behaviors of Al-Zn-Mg alloy. Scripta Materialia, 56, 305-308.
[8] 黄兰萍, 陈康华, 李松, 等 (2005) 高温预析出对Al-Zn-Mg铝合金组织力学性能和应力腐蚀性能的影响. 中国有色金属学报, 15, 727-733.
[9] 张建波, 张永安, 何振波, 等 (2012) 自然时效对7N01铝合金组织和性能的影响. 稀有金属, 36, 191-195.
[10] 高安江, 宋高乔 (2011) 7N01铝合金120℃单级时效的组织和性能. 材料热处理学报, 32, 104-109.
[11] 苟国庆, 黄楠, 陈辉, 等 (2012) 高速列车A7N01S-T5铝合金应力腐蚀行为研究. 材料科学与工程, 20, 134-139.
[12] 熊创贤, 邓运来, 万里, 等 (2010) 7050铝合金板在固溶过程中微结构与织构的演变. 中国有色金属学报, 20, 427-434.
[13] Li, X.M. and Starink, M.J. (2000) Analysis of precipitation and dissolution in overaged 7xxx aluminium alloys using DSC. Materials Science Forum, 331-337, 1071-1076.
[14] 汪明朴, 王志伟, 王正安, 等 (2001) 地铁用7005铝合金力学性能及微观结构分析. 中国有色金属学报, 11, 1069-1073.
[15] Mukhopadhyay, A.K., Yang, Q.B. and Singh, S.R. (1994) The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy. Acta Matallurgica Materialia, 42, 3083-3091.
[16] Burleigh, T.D. (1991) The postulated mechanisms for stress corrosion cracking of aluminum alloys: A review of the literature 1980-1989. Corrosion, 47, 89-98.