基于可持续能源的低碳产品性能评价方法研究
Sustainable Energy-Based Low-Carbon Product Performance Evaluation Method
摘要: 在基于可持续能源的产品设计过程中,产品低碳设计对象具有大量的定性和定量相结合的复杂知识,而如何利用上述不完备信息实现基于可持续能源的产品低碳设计的方案评价问题,是当前面临的一个挑战。本文通过建立基于可持续能源的低碳产品设计评价决策体系框架,实现了面向设计目录的基于可持续能源的产品多目标加权模糊层次分析法的综合评价。该模型采用多目标加权模糊层次分析法将低碳产品设计阶段的大量模糊定性知识转化成定量数据,从而实现智能化评价。该模型主要包含了五个模块:评价项构造模块、评价项权重求解模块、综合评价模块、设计师选择模块以及知识库管理模块。实践证明:上述基于可持续能源的产品低碳性能评价方法能够有效地支持产品低碳设计与评价决策。
Abstract: In the low-carbon design process of sustainable energy-based product, there are complex qualitative and quantitative knowledge and information in the design object of low-carbon product. It is a challenge to evaluate low-carbon design solutions in the sustainable energy-based low-carbon product design with the incomplete qualitative and quantitative information. This paper established sustainable energy-based product low-carbon design performance evaluation model for decision-making system based on design catalog. In this paper, a comprehensive evaluation of the design catalog for sustainable energy-based products based on multi-objective weighted fuzzy analytic hierarchy process was achieved, through the establishment of a sustainable energy-based low-carbon product design evaluation decision framework. With multi-objective weighted fuzzy analytic hierarchy process, fuzzy qualitative knowledge in low-carbon design will be transferred into quantitative data to realize intelligent evaluation. The model contains five modules: structure evaluation module, evaluation weight solution module, evaluation modules, select module and knowledge management module. It has proved that the above performance evaluation method of low-carbon product based on sustainable energy can effectively support product design and evaluation of low-carbon decisions.
文章引用:郁灵. 基于可持续能源的低碳产品性能评价方法研究[J]. 可持续能源, 2014, 4(3): 16-23. http://dx.doi.org/10.12677/SE.2014.43004

参考文献

[1] 百度百科 (2013) 可持续能源. http://baike.baidu.com/view/2355584.htm
[2] 王远亚, 吉威宁, 崔武军, 武洪强, 苑中显 (2013) 近十年来我国能源消费变化及未来发展趋势.可持续能源, 3, 17-21.
[3] Intergovernmental Panel on Climate Change (2007) IPCC Fourth Assessment Report: Climate Change, 447-496.
[4] United Nations (1998) Kyoto Protocol to the United Nations Framework on Convention on Climate Change.
[5] BSI PAS 2050 (2011) The Guide to PAS 2050-2011, How to Carbon Your Product Footprint, Identify Hotspots and Reduce Your Emission in the Supply Chain.
[6] 国务院办公厅 (2009) 国务院常务会研究决定我国控制温室气体排放目标 http://www.gov.cn/ldhd/2009-11/26/content_1474016.htm
[7] Finkbeiner, M. (2009) Carbon Footprint-ing-Opportunities and Threats. International Journal of Life Cycle Assessment, 14, 91-94.
[8] 郑晓泉 (2011) 未来能源发展战略.可持续能源, 1, 1-5.
[9] Saaty, T.L. (2013) Analytic Hierarchy Process. In: Encyclopedia of Operations Research and Management Science, Springer, 52-64.
[10] Shaw, K., Shankar, R., Yadav, S.S., et al. (2012) Supplier Selection Using Fuzzy AHP and Fuzzy Multi-Objective Linear Programming for Developing low Carbon Supply Chain. Expert Systems with Applications, 39, 8182-8192.
[11] 梁瑞勋, 周智帆, 陈一通, 曾万存 (2013) 应用模糊为基础的方法于太阳能光伏系统之最大功率追踪. 可持续能源, 3, 45-53.
[12] Bevilacqua, M., Ciarapica, F.E., Giacchetta, G., et al. (2011) A Carbon Footprint Analysis in the Textile Supply Chain. International Journal of Sustainable Engineering, 4, 24-36.
[13] Roth, K. (1993) Konstruieren mit Konstruktionskataloguen. Springer, Heidelberg.
[14] 李洪兴, 汪培庄 (1994) 模糊数学. 国防工业出版社, 北京.
[15] He, B., Han, L.Z., Liu, W.Z., Li, M. and Fang, M.L. (2009) A Computational Evaluation Approach Based on Design Catalogue for Product Conceptual Design and Its Application in Mechanical Transmission System. Proceedings of the IET International Communication Conference on Wireless Mobile & Computing, Shanghai, 7-9 December 2009, 306- 309.