修饰电极上选择性电催化氧化制备2,5-二甲酰基呋喃
Preparation of 2,5-Diformylfuran through Selective Electro-Catalytic Oxidation with Modified Metallic Electrodes
摘要: 近年来,由生物质生产呋喃衍生产品已成为一个热点研究领域,因其是有助于构建实现可持续能源供应和生产替代化学品的主要途径之一。作为一种重要的呋喃衍生品,2,5-二甲酰基呋喃是一种具有潜在广泛应用前景的多功能有机中间体。虽然2,5-二甲酰基呋喃已被证明非常有用,但其在工业上仍不易获得。迄今为止,已有很多催化方法可用于2,5-二甲酰基呋喃的制备,但多为化学催化法,环境污染大。电催化氧化法制备2,5-二甲酰基呋喃利用电化学反应的优势,是一种清洁氧化技术。本文介绍了电催化氧化技术应用于制备2,5-二甲酰基呋喃的主要反应途径及机制;对其技术优势和存在的问题也作了较为详细的阐述;并结合其研究现状对选择性电催化氧化制备2,5-二甲酰基呋喃技术进行了展望。总之,所述方法能够为未来工业上通过该清洁氧化技术而不是常见的化学催化法进行2,5-二甲酰基呋喃的生产提供一条潜在的可行的转化途径。
Abstract: In recent years, the production of furan derivatives from biomass has become an exciting research field, because it contributes to building one of the major routes for achieving sustainable energy supply and the production of alternative chemicals. As one of the most important furan derivatives, 2,5-diformylfuran (DFF) is a multifunctional organic intermediate with the prospective app- lication potentiality in the future. Although it has been proven very useful, DFF is still not easy to be obtained in industry. Up to now, there are several catalytic methods available for the preparation of DFF, but mainly concentrated on chemical catalysis, which are prone to bring about serious environmental pollution. Preparation method for producing DFF through electric-catalytic oxidation, taking the advantages of the electrochemical reaction, is a kind of clean oxidation technology. Main reaction routes and mechanisms of the electric-catalytic oxidation technology applied to the preparation of DFF were introduced; its technical advantages as well as existing problems were also elaborated; and combined with its research status, the technology of preparation of DFF through selective electric-catalytic oxidation was prospected. In a word, the introduced method could provide a potentially feasible transformation path for the industrial production of DFF through this kind of clean oxidation technology, instead of common chemical catalysis.
文章引用:张盛强, 李维烽, 林鹿. 修饰电极上选择性电催化氧化制备2,5-二甲酰基呋喃 [J]. 可持续能源, 2014, 4(3): 31-39. http://dx.doi.org/10.12677/SE.2014.43006

参考文献

[1] Corma, A., Iborra, S. and Velty, A. (2007) Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107, 2411-2502.
[2] Alonso, D.M., Bond, J.Q. and Dumesic, J.A. (2010) Catalytic conversion of biomass to biofuels. Green Chemistry, 12, 1493.
[3] Gallezot, P. (2012) Conversion of biomass to selected chemical products. Chemical Society Reviews, 41, 1538-1558.
[4] Roman-Leshkov, Y., Chheda, J.N., Dumesic, J.A. (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science, 312, 1933-1937.
[5] Zhao, H., Holladay, J.E., Brown, H., et al. (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 316, 1597-1600.
[6] Stahlberg, T., Fu, W.J., Woodley, J.M., et al. (2011) Synthesis of 5-(hydroxymethyl) furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem, 4, 451-458.
[7] Rosatella, A.A., Simeonov, S.P., Frade, R.F.M., et al. (2011) Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13, 754-793.
[8] Tong, X.L., Ma, Y. and Li, Y.D. (2010) Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385, 1-13.
[9] Koopman, F., Wierckx, N., de Winde, J.H., et al. (2010) Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2,5-furandicarboxylic acid. Bioresource Technology, 101, 6291-6296.
[10] Zhao, Q., Wang, L., Zhao, S., et al. (2011) High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst. Fuel, 90, 2289-2293.
[11] Yang, Y., Hu, C.W. and Abu-Omar, M.M. (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3•6H2O catalyst in a biphasic solvent system. Green Chemistry, 14, 509-513.
[12] Hui, Z. and Gandini, A. (1992) Polymeric schiff bases bearing furan moieties. European Polymer Journal, 28, 14611469.
[13] Hopkins, K.T., Wilson, W.D., Bender, B.C., et al. (1998) Extended aromatic furan amidino derivatives as anti-pneumocystis carinii agents. Journal of Medicinal Chemistry, 41, 3872-3878.
[14] Richter, D.T. and Lash, T.D. (1999) Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the “4+1” synthesis of sapphyrins. Tetrahedron Letters, 40, 6735-6738.
[15] del Poeta, M., Schell, W.A., Dykstra, C.C., et al. (1998) In vitro antifungal activities of a series of dication-substituted Carbazoles, furans, and benzimidazoles. Antimicrobial Agents and Chemotherapy, 42, 2503-2510.
[16] Amarasekara, A.S., Green, D. and Williams, L.D. (2009) Renewable Resources Based Polymers: Synthesis and Characterization of 2,5-diformylfuran-urea Resin. European Polymer Journal, 45, 595-598.
[17] Gupta, N.K., Nishimura, S., Takagaki, A. and Ebitani, K. (2011) Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under Atmospheric oxygen pressure. Green Chemistry, 13, 824.
[18] Lilga, M.A., Hallen, R.T. and Gray, M. (2010) Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Topics in Catalysis, 53, 1264-1269.
[19] Navarro, O., Canós, A. and Chornet, S. (2009) Chemicals from biomass: Aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane catalyzed by immobilized vanadyl-pyridine complexes on polymeric and organofunctionalized Mesoporous supports. Topics in Catalysis, 52, 304-314.
[20] Carlini, C., Patrono, P., Galletti, A.M.R., Sbrana, G. and Zima, V. (2005) Selective oxidation of 5-hydroxymethyl-2furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Applied Catalysis A: General, 289, 197-204.
[21] Moreau, C., Durand, R., Pourcheron, C. and Tichit, D. (1997) Selective oxidation of 5-hydroxymethylfurfural to 2,5furan-dicarboxaldehyde in the presence of titania supported Vanadia Catalysts. Studies in Surface Science and Catalysis, 108, 399-406.
[22] Ma, J.P., Du, Z.T., Xu, J., Chu, Q. and Pang, Y. (2011) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. ChemSusChem, 4, 51-54.
[23] Takagaki, A., Takahashi, M., Nishimura, S. and Ebitani, K. (2011) One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catalysis, 1, 15621565.
[24] Yang, Z.Z., Deng, J., Pan, T., Guo, Q.X. and Fu, Y. (2012) A One-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2. Green Chemistry, 14, 2986-2989.
[25] Xiang, X., He, L., Yang, Y., Guo, B., Tong, D. and Hu, C. (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2,5-diformylfuran. Catalysis Letters, 141, 735-741.
[26] Saha, B., Dutta, S. and Abu-Omar, M.M. (2012) Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts. Catalysis Science & Technology, 2, 79.
[27] van Deurzen, M.P.J., van Rantwijk, F. and Sheldon, R.A. (1997) Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural. Journal of Carbohydrate Chemistry, 16, 299-309.
[28] 冯晓娟, 石彦龙, 王永生, 敏世雄, 胡中爱 (2011) 铂-氧化铈/聚苯胺/聚砜复合膜电极的制备及对甲醇的电催化氧化. 应用化学, 3, 302-307.
[29] 郝玉翠, 葛伟青, 刘艳娟 (2012) 电极材料在电催化氧化处理有机废水中的应用. 化学工程师, 1, 35-37.
[30] 杨佳佳, 魏树权, 邓超, 高颖, 邬冰 (2011) 甲酸在Pd-Ru/C催化剂上的电催化氧化. 黑龙江大学自然科学学报, 1, 81-84.
[31] 刘春涛, 孙雍荣, 谷宇, 王阔, 杜春雨 (2011) Pt/CeO2/CNTs催化剂对甲醇电催化氧化的研究. 中国稀土学报, 5, 533-537.
[32] 戴启洲, 蔡少卿, 王家德, 陈建孟 (2010) 电催化氧化/生物法联用处理高浓度化工废水. 中国给水排水, 12, 9699.
[33] 林珩, 陈声培, 林进妹, 林爱兰, 黄如莺, 陈国良 (2003) 1,4-丁二醇在Pt及其修饰电极上吸附氧化过程研究. 分子科学学报: 中英文版, 3, 159-165.
[34] 杨宏洲, 邓友全 (2002) Au/PAni/GC 电极的制备及对甲醛的电催化氧化研究. 化学学报, 4, 569-573.
[35] 陈国良, 林珩, 卢江红, 林进妹, 林秀梅, 陈燕鑫 (2004) 4 种有机小分子伯醇在Pt电极上吸附和氧化的比较研究. 漳州师范学院学报 (自然科学版), 4, 71-74.
[36] 褚道葆, 吴晟, 张雪娇, 肖英, 周莹 (2010) 4-甲基吡啶在 Ti/nanoTiO2-Pt 电极上的电催化氧化. 安徽师范大学学报: 自然科学版, 2, 139-143.
[37] 王益凡 (2004) Pt电极上Sb吸附原子对 1,3-丁二醇电催化氧化性能的影响. 上海大学学报: 自然科学版, 4, 406409.
[38] Skowroński, R., Cottier, L., Descotes, G. and Lewkowski, J. (1996) Selective anodic oxidation of 5-hydroxymethylfurfural. Synthesis, 1996, 1291-1292.
[39] Grabowski, G., Lewkowski, J. and Skowroński, R. (1991) The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode. Electrochimica Acta, 36, 1995.
[40] Al Baradii, A., Kokoh, K.B., Huser, H., Lamy, C. and Léger, J.M. (1999) Selective electrocatalytic oxidation of 2,5dihydroxymethylfuran in aqueous medium: A chromatographic analysis of the reaction products. Electrochimica Acta, 44, 2779-2787.
[41] Kokoh, K.B. and Belgsir, E.M. (2002) Electrosynthesis of furan-2,5-dicarbaldehyde by programmed potential electrolysis. Tetrahedron Letters, 43, 229-231.
[42] Vuyyuru, K.R. and Strasser, P. (2012) Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catalysis Today, 195, 144-154.
[43] Hibbitts, D.D. and Neurock, M. (2013) Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts. Journal of Catalysis, 299, 261-271.