喷嘴数目对多喷嘴射流泵性能影响的数值分析
Numerical Analysis of Performance of Jet Pump with Different Nozzle Number
DOI: 10.12677/ME.2014.23006, PDF, HTML, 下载: 2,867  浏览: 9,027  国家自然科学基金支持
作者: 于凤荣:昆明理工大学冶金与能源工程学院,昆明;闫国军:哈尔滨工业大学能源科学与工程学院,哈尔滨
关键词: 射流泵多喷嘴数值模拟流场Jet Pump Multi-Nozzle Numerical Simulation Flow Field
摘要: 射流泵结构简单,在某些特殊工艺流程中具有明显的优越性和不可替代性,但传能效率低,通过合理设计结构可改善其性能。利用前处理软件GAMBIT建立多喷嘴射流泵三维空间模型,在不改变面积比、流量比及出口压力的前提下,应用CFD软件——FLUENT,对均匀分布、水平射流出流的、具有不同喷嘴数目的射流泵内部流场分别进行数值模拟计算,得到了多喷嘴射流泵内部流场随喷嘴数目的不同而变化的规律。通过对数值模拟结果进行分析,发现:喷嘴数目对流体轨迹的影响很大,喷嘴数目决定着回流区域的大小。射流泵的性能不是随着喷嘴数目的增加而呈单调上升趋势。该结果为多喷嘴射流泵的设计及研究提供参考。
Abstract: The structure of jet pump is simple, and it cannot be replaced in some special technological process. But the efficiency of energy transfer of jet pump is low, and jet pump performance can be improved by reasonable structural design. The three-dimensional spatial model of multi-nozzle jet pump was established by GAMBIT software. Under the premise of certain area ratio, flow ratio and outlet pressure, the Computational Fluid Dynamic (CFD) software—FLUENT was used to calculate the inner flow field of multi-nozzle jet pump with uniform distribution and horizontal jet flow and different nozzle numbers. The rule of inner flow field of multi-nozzle jet pump is changed with the number of nozzle. According to the simulated flow field, the result shows that the number of nozzle has much effect on the fluid track and the number of nozzle determines the size of backflow region. The performance of the jet pump is not increased with the increase of nozzle numbers; it is not a monotonous rising trend. The result will provide reference for design and study on multi-nozzle jet pumps in the future.
文章引用:于凤荣, 闫国军. 喷嘴数目对多喷嘴射流泵性能影响的数值分析[J]. 矿山工程, 2014, 2(3): 27-34. http://dx.doi.org/10.12677/ME.2014.23006

参考文献

[1] 陈凤官, 綦耀光, 王渭, 等 (2012) 煤层气井水力射流泵排采的适应性研究. 石油和化工设备, 4, 8-10.
[2] 苏吉鑫, 陈正文, 王永强, 等 (2010) 船用消防射流泵流场的数值分析. 流体机械, 6, 29-32.
[3] 朱劲木, 张松波 (2013) 可调射流泵在水电站技术供水中的应用研究. 中国农村水利水电, 3, 160-166.
[4] Piotrowski, K., Matynia, A. and Hutnik, N. (2013) Gas-liquid jet pump crystallizer in phosphorus recycling technology —Neural network model. Procedia Environmental Sciences, 18, 756-765.
[5] 冯卫华, 宋新华 (2012) 射流泵在海洋探井测试中的应用. 油气井测试, 3, 38-39.
[6] 龙新平, 鄢恒飞, 张松艳, 等 (2010) 喉管长度对环形射流泵性能影响的数值模拟. 排灌机械工程学报, 3, 198-206.
[7] Fan, J., Eves, J. and Thompson, H.M. (2011) Computational fluid dynamic analysis and design optimization of jet pumps. Computers & Fluids, 46, 212-217.
[8] 龙新平, 程洪贵, 杨雪龙 (2012) 超大面积比射流泵性能模拟与试验研究. 石油机械, 4, 379-383.
[9] Song, X.-G., Park, J.-H. and Kim, S.-G. (2013) Performance comparison and erosion prediction of jet pumps by using a numerical method. Mathematical and Computer Modelling, 57, 245-253.
[10] Shah, A., Chughtai, I.R. and Inayat, M.H. (2011) Experimental and numerical analysis of steam jet pump. International Journal of Multiphase Flow, 37, 1305-1314.
[11] 汪超, 徐建宁, 曲文涛, 等 (2008) 内滑套式射流泵的研制. 流体机械, 1, 47-49.
[12] 龙新平, 姚鑫, 杨雪龙 (2012) 多孔喷嘴射流泵流动模拟与涡结构分析. 排灌机械工程学报, 2, 136-140.
[13] 乌骏, 袁丹青, 王冠军, 等 (2007) 射流泵的发展现状与展望. 排灌机械, 2, 65-68.