河口感潮区表层沉积物PO43--P的吸附特征
The Characteristics of Phosphate Adsorption on Surface Sediments in Estuary
DOI: 10.12677/AEP.2014.44023, PDF, HTML, 下载: 2,648  浏览: 7,739 
作者: 刘书慧, 李 健:青岛出入境检验检疫局,青岛;张 健:青岛谱尼测试有限公司,青岛;郑西来:中国海洋大学,海洋环境与生态教育部重点实验室,青岛
关键词: 河口沉积物磷酸盐吸附Estuary Sediments Phosphate Adsorption
摘要: 本文研究了胶州湾李村河河口感潮区3个典型采样点表层沉积物对PO43--P吸附动力学和热力学行为,并探讨了盐度、温度对PO43--P吸附动力学过程的影响。PO43--P吸附动力学过程可分为3个阶段:0~1 h快速吸附阶段,1~12 h缓慢吸附阶段,12 h之后平衡阶段;盐度升高对PO43--P吸附则呈现抑制作用;温度升高有利于PO43--P的吸附作用,温度升高加快了吸附速率,使固液体系更快的达到平衡。PO43--P吸附等温曲线符合Langmuir等温吸附方程,三个取样点的PO43--P的吸附–解吸临界浓度分别为:0.034 mg∙L−1、0.289 mg∙L−1和0.067 mg∙L−1
Abstract: The adsorption kinetics and thermodynamics of phosphate onto 3 typical surface sediments from the estuary of Li Cun River and the influencing of temperature and salinity on kinetics were inves-tigated. The adsorption kinetics process can be divided into 3 phase: fast adsorption stage (0 - 1 h), slow adsorption stage (1 - 12 h) and balance stage (>12 h). Increased salinity can inhibit phosphate adsorption and increased temperature promotes the adsorption. The reaction rate of the system speeded up and the balance time advanced when the temperature improved. Adsorption isothermal curve ofPO43--Pcorresponds with Langmuir isothermal adsorption equation. The critical concentrations of adsorption-desorption of the three sediments samples were: 0.034 mg∙L−1, 0.289 mg∙L−1 and 0.067 mg∙L−1.
文章引用:刘书慧, 张健, 郑西来, 李健. 河口感潮区表层沉积物PO43--P的吸附特征[J]. 环境保护前沿, 2014, 4(4): 166-172. http://dx.doi.org/10.12677/AEP.2014.44023

参考文献

[1] 林荣根, 吴景阳 (1994) 黄河口沉积物对磷酸盐的吸附与释放. 海洋学报, 4, 82-90.
[2] Falkowski, P., Scholesr, J., Boyle, E., et al. (2000) The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291-296.
[3] 刘敏, 侯立军 (2002) 长江口潮滩表层沉积物对 -P的吸附特征. 地理学报, 4, 397-406.
[4] Perkins, R.G. and Underwood, G.J.C. (2000) The potential for phosphorus release across the sedi-ment-water interface in an eutrophic reservoir dosed with ferric sulphate. Water Research, 35, 156-167.
[5] Boston, V., Pontiac, J. and Bastian, M. (2000) Forms of particulate phosphorus in suspension and in bottom sediments in the Danube Delta. Lakes and Reservoirs, 5, 105-110.
[6] Lopez, P., Luch, X., Vidal, M., et al. (1996) Adsorption of phosphorus on sediments of the Balearie Islands (Spain) related to their composition. Esruarine Coastal and Science, 42, 185-196.
[7] 石晓勇, 史致丽, 余恒 (1999) 黄河口磷酸盐缓机制的探讨I。黄河口悬浮物对磷酸盐的吸附–解吸研究. 海洋与湖泊, 2, 192-197.
[8] 董慧, 郑西来, 张健 (2012) 河口沉积物孔隙水营养盐分布特征及扩散通量. 水科学进展, 6, 815-821.
[9] 张健, 郑西来, 董慧等 (2012) 河口表层沉积物中磷酸盐释放的动力学特征. 海洋地质前沿, 3, 1-6.
[10] House, W.A. and Denison, F.H. (2002) Total phosphorus content of rivers sediments in relationship to calcium, iron and organic matter concentrations. The Science of the Total Environment, 282-283, 341-351.
[11] Tanaka, K. (1988) Phosphate adsorption and desorption by the sediment in Chikugo River Estuary, Japan. Bull Seikai Reg Fish Res Lab, 66, 1-12.
[12] 戴树桂 (2003) 环境化学. 高等教育出版社, 北京, 121-123.