二氧化硅光波导膜材料的制备工艺
Fabrication Process of Silica Film for Optical Waveguides
DOI: 10.12677/OE.2014.43006, PDF, HTML, 下载: 3,254  浏览: 12,843 
作者: 吴金东, 黄 舒, 胡海鑫:深圳市光纤传感工程技术研究开发中心,深圳;丁纲筋:T&S Communications Co. Ltd., Shenzhen;肖湘杰:深圳太辰光通信股份有限公司,深圳
关键词: 平面光波导二氧化硅膜等离子增强化学气相沉积火焰水解沉积Planar Lightwave Circuits Silica Film PECVD FHD
摘要: 二氧化硅(SiO2)平面光波导器件在光通信和光传感的应用日益广泛,制备SiO2膜材料是平面光波导及其集成器件制作的基础。等离子增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition, PECVD)和火焰水解沉积(Flame Hydrolysis Deposition, FHD)工艺是制备SiO2厚膜的典型方法, 本文分析总结了制备工艺参数对膜层性能的影响,说明PECVD + FHD混合工艺是SiO2型PLC器件最具竞争性的制作方法。
Abstract: SiO2 based planar waveguide circuit device has found increasing application in optical communi-cation and optical sensing. The deposition of SiO2 thin film is the basis of fabricating PLC and inte-grated devices. PECVD (Plasma enhanced Chemical Vapor Deposition) and FHD (Flame Hydrolysis Deposition) are the typical techniques for depositing SiO2 thin film. In this paper, the influence of process parameters on thin film performance is discussed, showing that the hybrid process of PECVD and FHD is the most competitive way to fabricate PLC devices on SiO2 substrate.
文章引用:吴金东, 黄舒, 胡海鑫, 丁纲筋, 肖湘杰. 二氧化硅光波导膜材料的制备工艺[J]. 光电子, 2014, 4(3): 34-43. http://dx.doi.org/10.12677/OE.2014.43006

参考文献

[1] Doerr, C.R. and Okamoto, K. (2006) Advances in silica planar lightwave circuits. Journal of Lightwave Technology, 24, 4763-4789.
[2] Okamoto, K. (1999) Recent progress of integrated optics planar lightwave circuits. Optical and Quantum Electronics, 31, 107-129.
[3] Feng, D.Z., Feng, N.N., Kung, C.C. and Liang, H. (2011) Compact single-chip VMUX/DEMUX on the silicon- on-insulator platform. Optics Express, 19, 6125.
[4] Cho, S.M., Kim, Y.T. and Yoon, D.H. (2003) Optical characterization of silica based waveguide prepared by plasma enhanced chemical vapor deposition. Journal of the Korean Physical Society, 42, S947-S951.
[5] 亢喆, 黎威志, 袁凯, 蒋亚东 (2010) PECVD淀积SiO2薄膜工艺研究. 微处理机, 1, 23-26.
[6] Tandon, P. and Boek, H. (2003) Experimental and theoretical studies of flame hydrolysis deposition process for making glasses for optical planar devices. Journal of Non-Crystalline Solids, 317, 275-289.
[7] Ruano, J.M., Benoit, V., Aitchison, J.S. and Cooper, J.M. (2000) Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices. Analytical Chemistry, 72, 1093-1097.
[8] Kim, Y.T., Cho, S.M. and Seo, Y.G. (2003) Refractive index control of core layer using PECVD and FHD for silica optical waveguide. Surface and Coatings Technology, 171, 34-38.
[9] Hess, R.R. (2011) Optimized PECVD chamber clean for improved film deposition capability. CS MANTECH Conference, Palm Springs, 16th-19th May 2011, 4p.
[10] Lai, Q., Gu, J.S., Smit, M.K., Schmid, J. and Melchior, H. (1992) Simple technologies for fabrication of low-loss silica waveguide. Electronics Letters, 28, 1000-1001.
[11] 郑伟, 吴远大, 邢华, 张乐天, 李爱武, 刘国范, 张玉书 (2002) 火焰水解法制备SiO2-GeO2平面波导材料. 光子学报, 22, 45-48.
[12] Cho, J., Han, D., Song, J.H. and Jung, S. (2005) Crosstalk enhancement of awg fabricated by flame hydrolysis deposition method. IEEE Photonics Technology Letters, 17, 2328-2330.
[13] Kominato, T., Ohmori, Y., Okazaki, H. and Yasu, M. (1990) Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method. Electronics Letters, 26, 327-329.
[14] Cho, S.M., Kim, Y.T. and Yoon, D.H. (2003) Optical characterization of silica based waveguide prepared by plasma enhanced chemical vapor deposition. Journal of the Korean Physical Society, 42, S947-S951.
[15] Ay, F. and Aydinli, A. (2004) Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials, 26, 33-46.
[16] Iacona, F., Ceriola, G. and La Via, F. (2001) Structural properties of SiO2 films prepared by plasma enhanced chemical vapor deposition. Materials Science in Semiconductor Processing, 4, 43-46.
[17] Lee, J.W., Kim, S.S., Lee, B.T. and Moon, J.H. (2004) Ge-doped SiO2 glass films prepared by plasma enhanced chemicalvapor deposition for planar waveguides. Applied Surface Science, 228, 271-276.
[18] 杭凌侠, 张霄, 周顺 (2010) PECVD 工艺参数对SiO2薄膜光学性能的影响. 西安工业大学学报, 2, 117-120.
[19] Hussein, M.G., Wörhoff, K., Roeloffzen, C.G.H., Hilderink, L.T.H., de Ridder, R.M. and Driessen, A. (2001) Characterization of thermally treated PECVD SiON layers. IEEE/LEOS Benelux Chapter 2001 Annual Symposium, Brussel, 3 December 2001, 1-4.
[20] Kim, Y.T., Cho, S.M., Seo, Y.G., Yoon, H.D., Im, Y.M. and Yoon, D.H. (2003) Influence of hydrogen on SiON thick film for silica waveguide depositedby PECVD and annealing effect. Surface and Coatings Technology, 173-174, 204- 207.
[21] Bauters, J.F., Heck, M.J.R., John, D., Dai, D., Tien, M.C., Barton, J.S., et al. (2011) Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Optics Express, 19, 3163-3274.
[22] Bauters, J.F., Heck, M.J.R., John, D.D., Tien, M.C., Li, W., Barton, J.S., Leinse, A., Heideman, R.G., Blumenthal, D.J. and Bowers, J.E. (2011) Ultra-low-loss single-mode Si3N4 waveguides with 0.7 dB/m propagation loss. 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 September 2011, 18-22.
[23] Zhang, L., Xie, W., Wu, Y., Xing, H., Li, A., Zheng, W. and Zhang, Y. (2003) Thermal annealing of SiO2 fabricated by flame hydrolysis deposition. Chinese Physics Letters, 20, 1366-1368.
[24] 郜定山, 李建光, 王红杰, 安俊明, 李健, 夏君磊, 胡雄伟 (2004) Si基片上掺Ge-SiO2的火焰水解法制备. 半导体学报, 6, 674-677.