豆科植物系统学研究新进展
New Advances in Legume Systematics
DOI: 10.12677/BR.2014.35023, PDF, HTML,  被引量 下载: 4,443  浏览: 15,653  国家自然科学基金支持
作者: 林彦翔, 王 祺, 申 思:中国科学院植物研究所,系统与进化植物学国家重点实验室,北京
关键词: 豆科云实亚科含羞草亚科蝶形花亚科系统学多亚科分类系统Leguminosae Caesalpinioideae Mimosoideae Papilionoideae Systematics Multi-Subfamilial Classification System
摘要: 本文综述了近年来豆科植物系统学研究的新进展。豆科Leguminosae作为被子植物第三大科,约有751个现生属和19,500种,全球广泛分布,具有重要的生态和经济价值。豆科植物可能起源于白垩纪晚期,其化石和现生分类群在新生代变得丰富多样。近来的分子系统学研究表明,传统的豆科3亚科(即云实亚科Caesalpinioideae、含羞草亚科Mimosoideae和蝶形花亚科Papilionoideae)分类系统从进化上解读并不合理,而最新提出的豆科多亚科分类系统则获得较好的支持,尽管亚科的具体数目和划分仍然存在很大争议。此外,豆目中最为密切的豆科、远志科Polygalaceae、皂皮树科Quillajaceae和海人树科Surianaceae的准确系统发育关系仍然悬而未决,而且豆科系统发育树图基部节点的支持率也不高,并系的云实亚科及其内部的一些关键分类群(例如紫荆族Cercideae、决明族Cassieae、甘豆族Detarieae和云实族Caesalpinieae)的重新划分亟需详细研究。
Abstract: New advances in legume systematics are reviewed herein. The Leguminosae, being the third largest angiosperm family with about 751 living genera and ca. 19,500 species, has a global distribution as well as a key ecological and economic importance. The Leguminosae might have made their debut since the Late Cretaceous, boasting an abundant and diverse fossil and extant taxa in the Cenozoic. Recent molecular systematic studies suggested that the traditional classification system of legumes subdivided into three subfamilies (i.e., Caesalpinioideae, Mimosoideae, and Papilionoideae) has not been evolutionarily reasonable. Instead, the currently proposed systems of classification for legumes with more than three subfamilies are better supported despite the uncertainty for the concrete number and delimitation of subfamilies. In addition, proper phylogenetic relationships among the four families (i.e., Leguminosae, Polygalaceae, Quillajaceae, and Surianaceae) in the order Fabales have hitherto been poorly resolved, and the basal nodes of phylogenetic tree topologies in Leguminosae are not well supported. How to reclassify the paraphyletic subfamily Caesalpinioideae and its own pivotal taxa (e.g., Cercideae, Cassieae, Detarieae, and Caesalpinieae) desperately need more detailed researches.
文章引用:林彦翔, 王祺, 申思. 豆科植物系统学研究新进展[J]. 植物学研究, 2014, 3(5): 179-187. http://dx.doi.org/10.12677/BR.2014.35023

参考文献

[1] Sprent, J.I. (2007) Evolving ideas of legume evolution and diversity: A taxonomic perspective on the occurrence of nodulation. New Phytologist, 174, 11-25.
[2] Sprent, J.I. (2008) 60Ma of legume nodulation. What’s new? What’s changing? Journal of Experimental Botany, 59, 1081-1084.
[3] LPWG (The Legume Phylogeny Working Group) (2013) Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. Taxon, 62, 217-248.
[4] LPWG (The Legume Phylogeny Working Group) (2013) Towards a new classification system for legumes: Progress report from the 6th International Legume Conference. South African Journal of Botany, 89, 3-9.
[5] Schrire, B.D., Lavin, M. and Lewis, G.P. (2005) Global distribution patterns of the Leguminosae: Insights from recent phylogenies. Biologiske Skrifter, 55, 375-422.
[6] Lewis, G., Schrire, B., Mackinder, B. and Lock, M. (2005) Legumes of the World. Royal Botanic Gardens, Richmond.
[7] Herendeen, P.S. and Dilcher, D.L. (1992) Advances in Legume Systematics, Part 4, the Fossil Record. Royal Botanic Gardens, Richmond.
[8] Wing, S.L., Herrera, F., Jaramillo, C.A., Gómez-Navarro, C., Wilf, P. and Labandeira, C.C. (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of neotropical rainforest. Proceedings of the National Academy of Sciences, USA, 106, 18627-18632.
[9] Lavin, M., Herendeen, P.S. and Wojciechowski, M.F. (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, 54, 575-594.
[10] Scherson, R.A., Vidal, R. and Sanderson, M.J. (2008) Phylogeny, biogeography, and rates of diversification of the New World Astraglaus (Leguminosae) with an emphasis on South American radiations. American Journal of Botany, 95, 1030-1039.
[11] Steyermark, J.A., Berry, P.E., Yatskievych, K. and Holst, B.K. (2001) Flora of the Venezuelan Guayana. Missouri Botanical Garden Press, St. Louis.
[12] Cullen, J., Knees, S.G. and Cubey, H.S. (2011) The European Garden Flora. 2nd Edition, Cambridge University Press, Cambridge.
[13] Lewis, G.P. and Schrire, B.D. (2003) Leguminosae or Fabaceae? In: Klitgaard, B. and Bruneau, A., Eds., Advances in Legume Systematics, Part 10, Higher Level Systematics, Royal Botanic Gardens, Kew, Richmond, 1-3.
[14] Wojciechowski, M.F., Lavin, M. and Sanderson, M.J. (2004) A phylogeny of the legumes (Leguminosae) based on analysis of the plastid matk gene sequences resolves many well-supported subclades within the family. American Journal of Botany, 91, 1846-1862.
[15] Bruneau, A., Mercure, M., Lewis, G.P. and Herendeen, P.S. (2008) Phylogenetic patterns and diver-sification in the caesalpinioid legumes. Botany, 86, 697-718.
[16] Doyle, J.J., Doyle, J.L., Ballenger, J.A., Dickson, E.E., Kajita, T. and Ohashi, H. (1997) A phylogeny of the chloroplast gene rbcl in the Leguminosae: Taxonomic cor-relations and insights into the evolution of nodulation. American Journal of Botany, 84, 541-554.
[17] Kajita, T., Ohashi, H., Tateishi, Y., Bailey, C.D. and Doyle, J.J. (2001) rbcL and legume phylogeny, with particular re- ference to Phaseoleae, Millettieae, and allies. Systematic Biology, 26, 515-536.
[18] Herendeen, P.S., Bruneau, A. and Lewis, G.P. (2003) Phylogenetic relationships in the caesalpinioid legumes: A preli- minary analysis based on morphological and molecular data. In: Bruneau, A. and Klitgaard, B.B., Eds., Advances in Legume Systematics, Part 10, Higher Level Systematics, Royal Botanic Gardens, Kew, Richmond, 37-62.
[19] Wojciechowski, M.F. (2003) Reconstructing the phylogeny of legumes (Leguminosae): An early 21st century perspective. In: Bruneau, A. and Klitgaard, B.B., Eds., Advances in Legume Systematics, Part 10, Higher Level Systematics, Royal Botanic Gardens, Kew, Richmond, 5-35.
[20] Polhill, R.M. and Raven, P.H. (1981) Advances in Legume Systematics. Part 1, Royal Botanic Gardens, Kew, Richmond.
[21] Herendeen, P.S., Lewis, G.P. and Bruneau, A. (2003) Floral morphology in caesalpinioid legumes: Testing the monophyly of the “Umtiza Clade”. International Journal of Plant Sciences, 164, S393-S407.
[22] Manzanilla, V. and Bruneau, A. (2012) Phylogeny reconstruction in the Caesalpinieae grade (Legu-minosae) based on duplicated copies of the sucrose synthase gene and plastid markers. Molecular Phylogenetics and Evolution, 65, 149- 162.
[23] Sinou, C., Forest, F., Lewis, G.P. and Bruneau, A. (2009) The genus Bauhinia s. l. (Le-guminosae): A phylogeny based on the plastid trnL-trnF region. Botany, 87, 947-960.
[24] Champagne, C.E.M., Go-liber, T.E., Wojciechowski, M.F., Mei, R.W., Townsley, B.T., Wang, K., Paz, M.M., Geeta, R. and Sinha, N.R. (2007) Compound leaf development and evolution in the legumes. Plant Cell, 19, 3369-3378.
[25] Bello, M.A., Bruneau, A., Forest, F. and Hawkins, J.A. (2009) Elusive relationships within order Fabales: Phylogene- tic analyses using matK and rbcL sequence data. Systematic Biology, 34, 102-114.
[26] Wang, Q., Song, Z.Q., Chen, Y.F., Shen, S. and Li, Z.Y. (2014) Leaves and fruits of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the Oligocene Ningming Formation of Guangxi, South China and their biogeographic implications. BMC Evolutionary Biology, 14, 1-16.
[27] Wunderlin, R., Larsen, K. and Larsen, S.S. (1981) Cercideae. In: Polhill, R.M. and Raven, P.H., Eds., Ad-vances in Legume Systematics, Royal Botanic Gardens, Kew, Richmond, 107-116.
[28] Lewis, G.P. and Forest, F. (2005) Cercideae. In: Lewis, G., Schrire, B.D., Mackinder, B. and Lock, M., Eds., Legumes of the World, Royal Botanic Gardens, Kew, Richmond, 57-67.
[29] Wunderlin, R.P. (2010) New combinations in Schnella (Fabaceae: Cae-salpinioideae: Cercideae). Phytoneuron, 49, 1- 5.
[30] Mackinder, B. (2005) Tribe Detarieae. In: Lewis, G., Schrire, B.D., Mackinder, B. and Lock, M., Eds., Legumes of the World, Royal Botanic Gardens, Kew, Richmond, 68-109.
[31] Langenheim, J.H. (2003) Plant resins: Chemistry, evolution, ecology, and ethnobotany. Timber Press, Portland.
[32] Fougère-Danezan, M., Maumont, S. and Bruneau, A. (2007) Relationships among resin producing De-tarieae s.l. (Legu- minosae) as inferred by molecular data. Systematic Biology, 32, 748-761.
[33] Wieringa, J.J. and Gervais, G.Y.F. (2003) Phylogenetic analyses of combined morphological and molecular data sets on the Aphano-calyx-Bikinia-Tetraberlinia group (Leguminosae, Caesalpinioideae, Detarieae s.l.). In: Klitgaard, B.B. and Bruneau, A., Eds., Advances in Legume Systematics, Part 10, Higher Level Systematics, Royal Botanic Gardens, Kew, Richmond, 181-196.
[34] Mackinder, B.A. and Pennington, R.T. (2011) Monograph of Berlinia (Leguminosae). Systematic Botany Monographs, 91, 1-117.
[35] Zimmerman, E., Prenner, G. and Bruneau, A. (2013) Floral morphology of Apuleia leiocarpa (Caesalpinioideae: Cassieae), an unusual andromonoecious legume. International Journal of Plant Sciences, 174, 154-160.
[36] Haston, E.M., Lewis, G.P. and Hawkins, J.A. (2005) A phylogenetic reappraisal of the Peltophorum Group (Caesalpinieae: Leguminosae) based on the chloroplast trnL-F, rbcL and rpS16 sequence data. American Journal of Botany, 92, 1359-1371.
[37] Bello, M.A., Hawkins, J.A. and Rudall, P.J. (2010) Floral ontogeny in Polygalaceae and its bearing on the homologies of keeled flowers in Fabales. International Journal of Plant Sciences, 171, 482-498.
[38] Bello, M.A., Rudall, P.J. and Hawkins, J.A. (2012) Combined phylogenetic analyses reveal interfamilial relationships and patterns of flora evolution in the eudicot order Fabales. Cladistics, 28, 393-421.