大型海藻绿潮浒苔的热解特性及其催化热解研究
Pyrolysis Characteristics and Catalytic Thermal Cracking of Macroalgae Enteromorpha prolifera
DOI: 10.12677/OJNS.2014.24007, PDF, HTML, 下载: 3,008  浏览: 10,713  国家自然科学基金支持
作者: 张 艳, 闫华晓, 孙小英, 侯斐斐, 孙延彪, 王 杰, 孙 辉, 李 浩, 杜 涵, 韩 丽, 赵 辉:山东科技大学化学与环境工程学院,青岛;岳娜娜:国家海洋局第一海洋研究所,青岛;何 涛:中科院青岛生物能源与过程研究所,中国科学院生物燃料重点实验室,青岛
关键词: 海洋生物质大型海藻绿潮浒苔热重分析催化热解Marine Biomass Macroalgae Enteromorpha prolifera Thermogravimetric Analysis (TGA) Catalytic Pyrolysis
摘要: 以海洋生物质绿潮浒苔为研究对象,并以玉米秸秆(草类生物质)和锯末(木质类生物质)为对比研究对象,采用热重分析得到三种生物质的热解特性。研究结果表明,与玉米秸秆和锯末等典型陆生生物质相比,浒苔的热稳定性最低。采用Coats-Redfern法分别计算该三种生物质的动力学参数,并得到了较可能的几个反应机理函数以及各自活化能数值。并以碳酸钠作为催化剂,用热重分析法分析了三种生物质的热解过程以及催化剂在不同浓度下对其热解效果的影响。其结果表明,Na2CO3能显著降低三种生物质的初始热解温度和最大失重速率所对应的温度。从对初始热解温度和最大失重速率所对应温度的降低程度而言,Na2CO3对陆生生物质锯末和玉米秸秆的催化效果优于对海洋生物质浒苔的催化效果。
Abstract: Pyrolysis characteristics of Enteromorpha prolifera, cornstalk (grass biomass) and sawdust (woody biomass) were investigated with thermogravimetric analysis (TGA) method. The results showed that Enteromorpha prolifera has lower thermostability compared with cornstalk and sawdust. The kinetics parameters including activation energy and the most probable mechanism functions of the three biomasses were calculated by Coats-Redfren method. Moreover, using sodium carbonate as catalyst impregnated biomass, the pyrolysis process of the three kinds of biomass and the effect of the catalyst with different concentrations were studied with thermogravimetric analysis. The results show that sodium carbonate can decrease the initial decomposition temperature and the maximum weight loss temperature. It has a stronger catalytic effect on cornstalk and sawdust on Enteromorpha prolifera as far as the decrease extent of the temperature is concerned.
文章引用:张艳, 闫华晓, 岳娜娜, 何涛, 孙小英, 侯斐斐, 孙延彪, 王杰, 孙辉, 李浩, 杜涵, 韩丽, 赵辉. 大型海藻绿潮浒苔的热解特性及其催化热解研究[J]. 自然科学, 2014, 2(4): 39-49. http://dx.doi.org/10.12677/OJNS.2014.24007

参考文献

[1] Altun, N.E., Hicyilmaz, C. and Kök, M.V. (2003) Effect of particle size and heating rate on the pyrolysis of Silopi as- phaltite. Journal of Analytical and Applied Pyrolysis, 67, 369-379.
[2] Aguiar, L., Márquez-Montesinos, F., Gonzalo, A., Sánchez, J.L. and Arauzo, J. (2008) Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues. Journal of Analytical and Applied Pyrolysis, 83, 124- 130.
[3] French, R. and Czernik, S. (2010) Cata-lytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 91, 25-32.
[4] Pattiya, A., Titiloye, J.O. and Bridgwater, A.V. (2010) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel, 89, 244-253.
[5] Brogund, A.E. and Barth, T. (1999) Effects of base catalysis on the product distribution from pyrolysis of woody biomass in the presence of water. Organic Geochemistry, 30, 1517-1526.
[6] Wang, J., Zhang, M.X., Chen, M.Q., Min, F.F., Zhang, S.P., Ren, Z.W. and Yan, Y.J. (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochimica Acta, 444, 110-114.
[7] Pan, P., Hu, C.W., Yang, W.Y., Li, Y.S., Dong, L.L., Zhu, L.F., Tong, D.M., Qing, R.W. and Fan, Y. (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101, 4593-4599.
[8] Wang, P., Zhan, S.H., Yu, H.B., Xue, X.F. and Hong, N. (2010) The effects of temperature and catalysts on the pyro- lysis of industrial wastes (herb residue). Bioresource Technology, 101, 3236-3241.
[9] Jiang, G.Z., Nowakowski, D.J. and Bridgwater, A.V. (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 498, 61-66.
[10] Ngo, T.-A., Kim, J. and Kim, S.-S. (2010) Characteristics and kinetics of cattle litter pyrolysis in a tubing reactor. Bio- resource Technology, 101,104-108.
[11] Van de Velden, M., Baeyens, J., Brems, A., Janssens, B. and Dewil, R. (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35, 232-242.
[12] Popescu, C. (1996) Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method. Thermochimica Acta, 285, 309-323.
[13] Zou, S.P., Wu, Y.L., Yang, M.D., Li, C. and Tong, J.M. (2010) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology, 101, 359-365.
[14] Zhao, H., Yan, H.X., Zhang, M.M., Liu, M. and Qin, S. (2010) Pyrolysis characteristics and kinetics of Enteromorpha prolifera biomass: A potential way of converting ecological crisis “Green tide” bioresource to bioenergy. Advanced Materials Research, 956, 170-175.
[15] Wang, J., Wang, G.C., Zhang, M.X., Chen, M.Q., Li, D.M., Min, F.F., Chen, M.G., Zhang, S.P., Ren, Z.W. and Yan, Y.J. (2006) A comparative study of thermolysis characteristics and kinetics of sea-weeds and fir wood. Process Biochemistry, 41, 1883-1886.
[16] Li, S.G., Xu, S.P., Liu, S.Q., Yang, C. and Lu, Q.H. (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology, 85, 1201-1211.
[17] Antal, M.J., Rogers, F.E. and Friedman, H. (1980) Kinetic of cellulose pyrolysis in nitrogen and steam. Combustion Science and Technology, 21, 141-152.
[18] Jakab, E., Mészárosa, E. and Borsa, J. (2010) Effect of slight chemical modification on the pyrolysis behavior of cellulose fibers. Journal of Analytical and Applied Pyrolysis, 87, 117-123.
[19] Williams, P.T. and Horne, P.A. (1994) The role of metal salts in the pyrolysis of biomass. Renewable Energy, 4, 1-13.
[20] Amen-Chen, C., Pakdel, H. and Roy, C. (2001) Production of monomeric phenols by ther-mochemical conversion of biomass: A review. Bioresource Technology, 79, 277-299.
[21] Tanczos, I., Pokol, G., Borsa, J., Tóth, T. and Schmidt, H. (2003) The effect of tetramethylammonium hydroxide in comparison with the effect of sodium hydroxide on the slow pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 68-69, 173-185.