具有分布时滞的奇异扰动KdV-KS方程的孤立波
Solitary Waves of Singularly Perturbed KdV-KS Equation with Distributed Delay
DOI: 10.12677/PM.2014.46037, PDF, HTML, XML, 下载: 2,565  浏览: 8,120  国家科技经费支持
作者: 蒋永新:河海大学理学院,南京
关键词: 几何奇异摄动KdV方程孤立波分布时滞Geometric Singular Perturbation KdV Equation Solitary Wave Distributed Delay
摘要: 我们研究一类基于KdV方程的非线性反应扩散方程,其非线性项具有分布时滞,高阶项是奇异扰动项,即著名的KS条件,我们称之为KdV-KS方程。我们主要研究孤立波的存在性,通过运用几何奇异摄动和线性链的技巧,证明了当平均时滞适当小时孤立波解的保持性,这里我们不需要原始KdV方程孤立波解的显式表达式。
Abstract: We study a sort of nonlinear reaction diffusion equation based on the Korteweg-de Vries (KdV) equation with a convolution term which introduces a time delay in the nonlinearity and with a higher order singularly perturbing term as the Kuramoto-Sivashinsky (KS) equation, called KdV-KS equation. We focus on the question of the existence of solitary wave solutions. By using geometric singular perturbation analysis and the linear chain trick, we prove that the solitary wave solutions persist when the average delay is suitably small. The explicit expression of original KdV solitary is not required.
文章引用:蒋永新. 具有分布时滞的奇异扰动KdV-KS方程的孤立波[J]. 理论数学, 2014, 4(6): 251-260. http://dx.doi.org/10.12677/PM.2014.46037

参考文献

[1] Korteweg, D.J. and de Vries, G. (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine, 39, 422-443.
[2] Gu, C.H. and Hu, H.S. (2005) Darboux transformation in integrable systems. Springer-Verlag, Berlin.
[3] Olver, P.J. (1986) Applications of lie groups to differential equations. Grad. Texts in Math., Springer-Verlag, Berlin.
[4] Ercolani, N.M., McLaughlin, D.W. and Roitner, H. (1993) Attractors and transients for a perturbed periodic KDV equation: A nonlinear spectral analysis. Journal of Nonlinear Science, 3, 477-539.
[5] Ogawa, T. (1994) Travelling wave solutions to perturbed Korteweg-de Vries equations. Hiroshima Mathematica Journal, 24, 401-422.
[6] Fan, X. and Tian, L. (2005) The existence of so-litary waves of singularly perturbed mKdV-KS equation. Chaos, Solitons Fractals, 26, 1111-1118.
[7] Fenichel, N. (1979) Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53-98.
[8] Jones, C.K.R.T. (1995) Geometrical singular perturbation theory. In: Johnson, R., Ed., Dynamical Systems, Lecture Notes in Mathematics Vol. 1609, Springer, New York, 44-118.
[9] Ruan, R. and Xiao, D. (2004) Stability of steady states and existence of travelling waves in a vector-disease model. Proceedings Royal Society of Edinburgh, 134A, 991-1011.
[10] Mansour, M.B.A. (2013) A geometric construction of traveling waves in a generalized nonlinear dispersive-dissipative equation. Journal Geometry and Physics, 69, 116-122.
[11] Ashwin, P., Bartucclli, M.V., Bridges, T.J. and Gourley, S.A. (2002) Travelling fronts for the KPP-Fisher equation with spatiotemporal delay. Zeit-schriftfürangewandte Mathematik und Physik, 53, 103-122.
[12] Zhao, Z.H. (2008) Solitary waves of the generalized KdV equation with distributed delays. Journal of Mathematical Analysis and Applications, 344, 32-41.